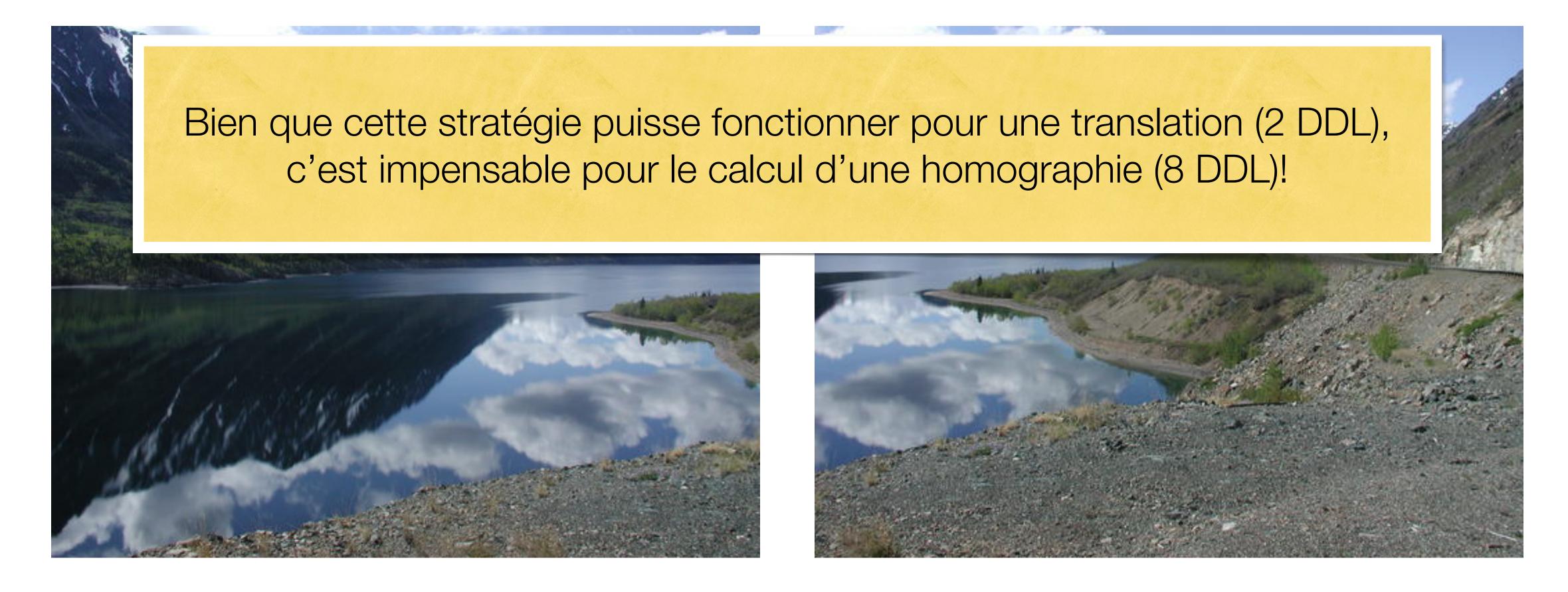


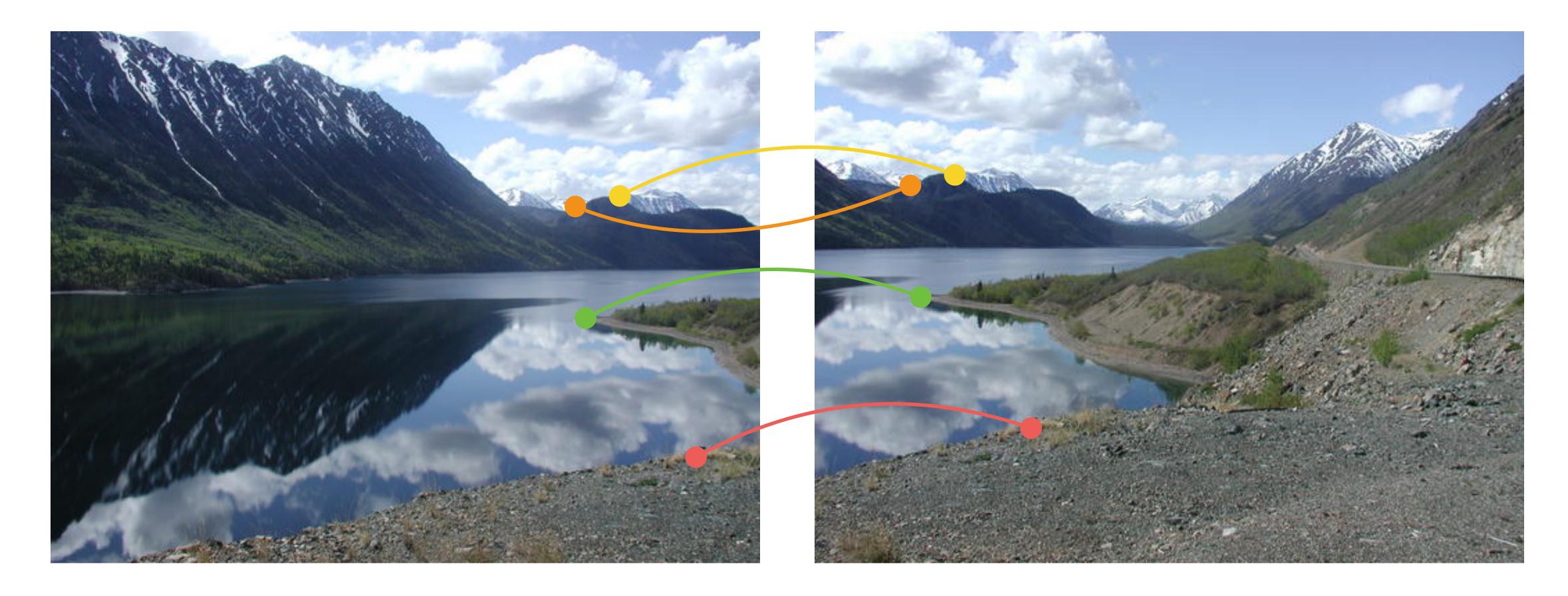
Calculer la similarité des images pour chaque transformation



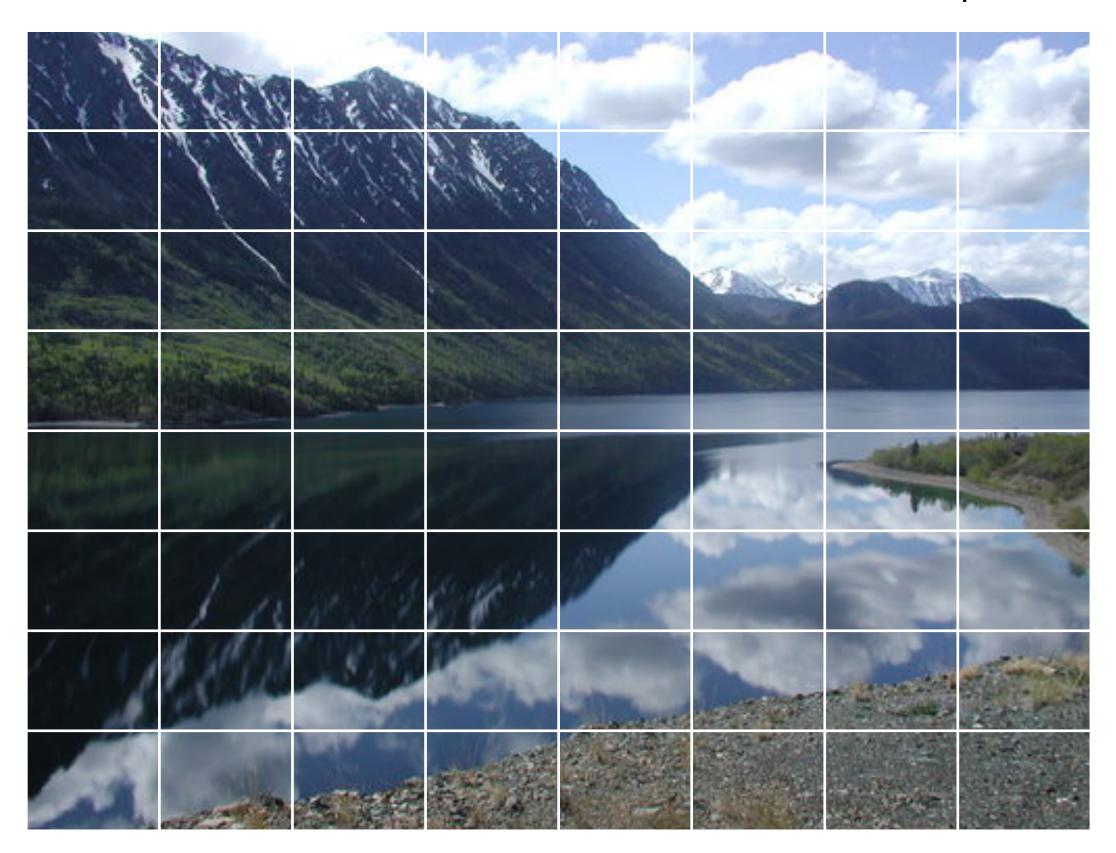
Comment aligner deux i

Comment déterminer ces correspondances automatiquement?

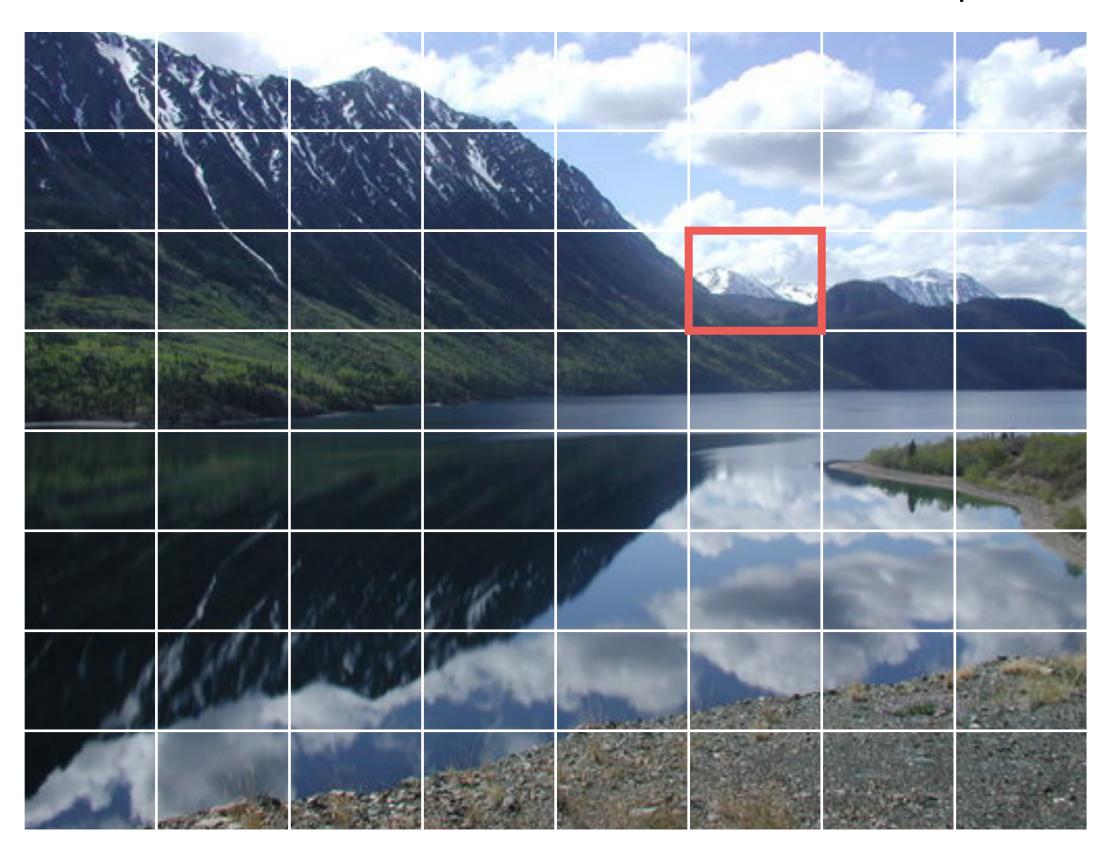
• À partir de 4 correspondances (8 points), calculer l'homographie!



- Idée :
 - subdiviser l'image en petits blocs
 - effectuer une recherche en translation pour chaque bloc

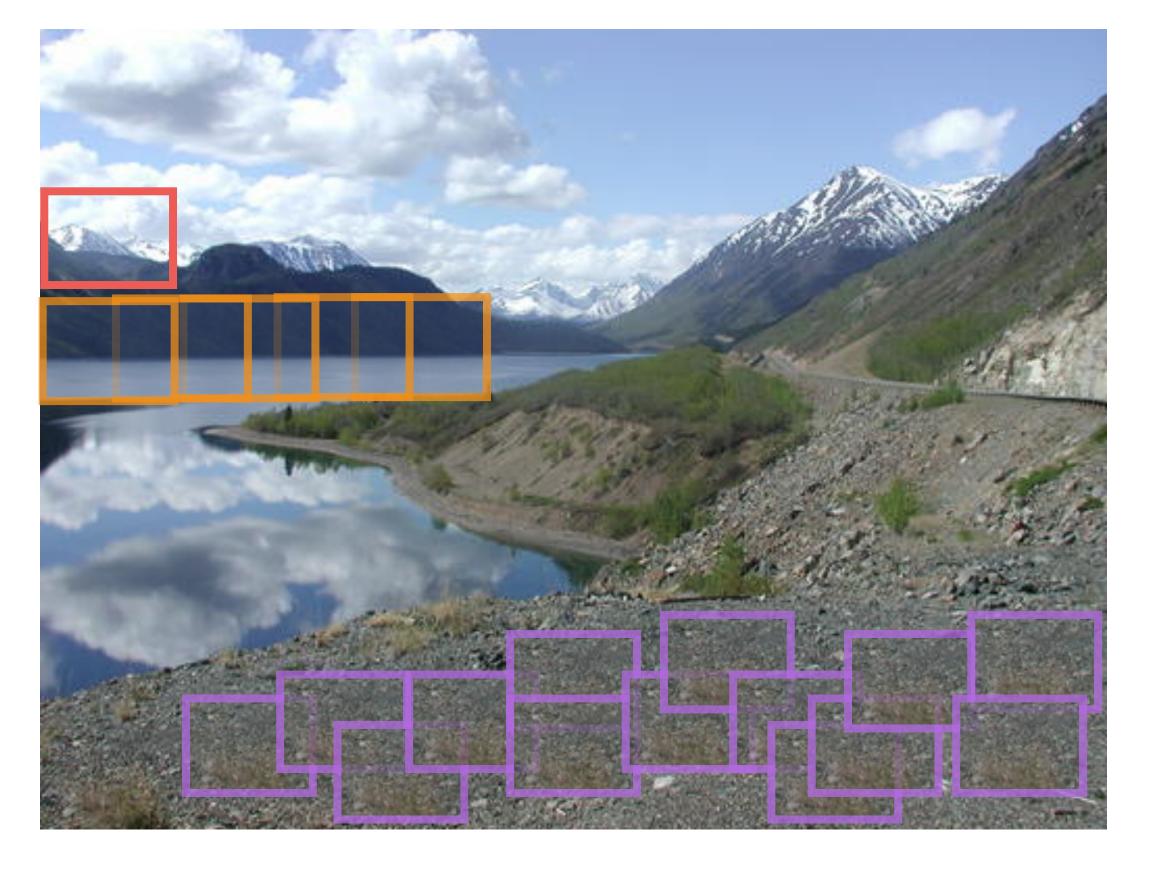


- Idée :
 - subdiviser l'image en petits blocs
 - effectuer une recherche en translation pour chaque bloc

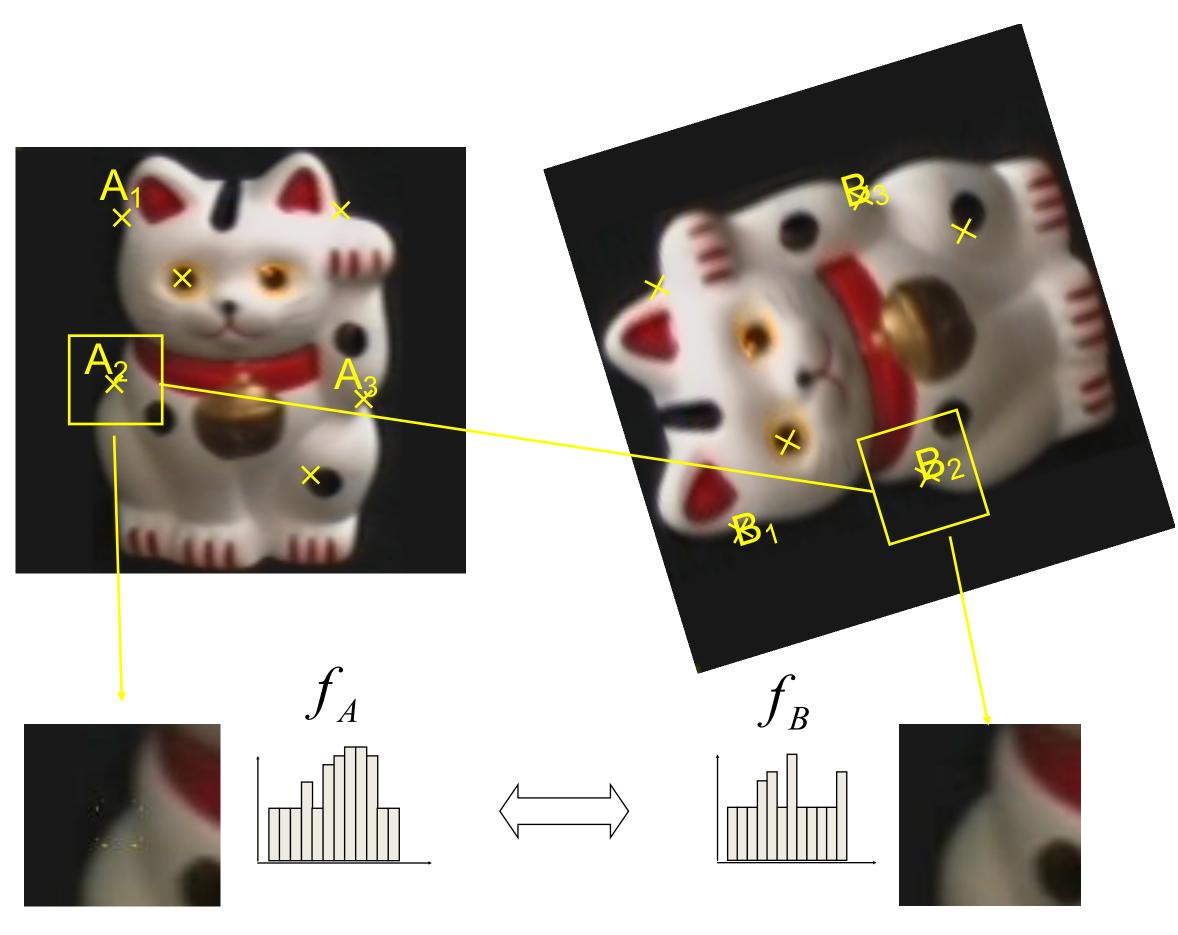


- Idée :
 - subdiviser l'image en petits blocs
 - effectuer une recherche en translation pour chaque bloc

Est-ce que tous les blocs sont utiles?



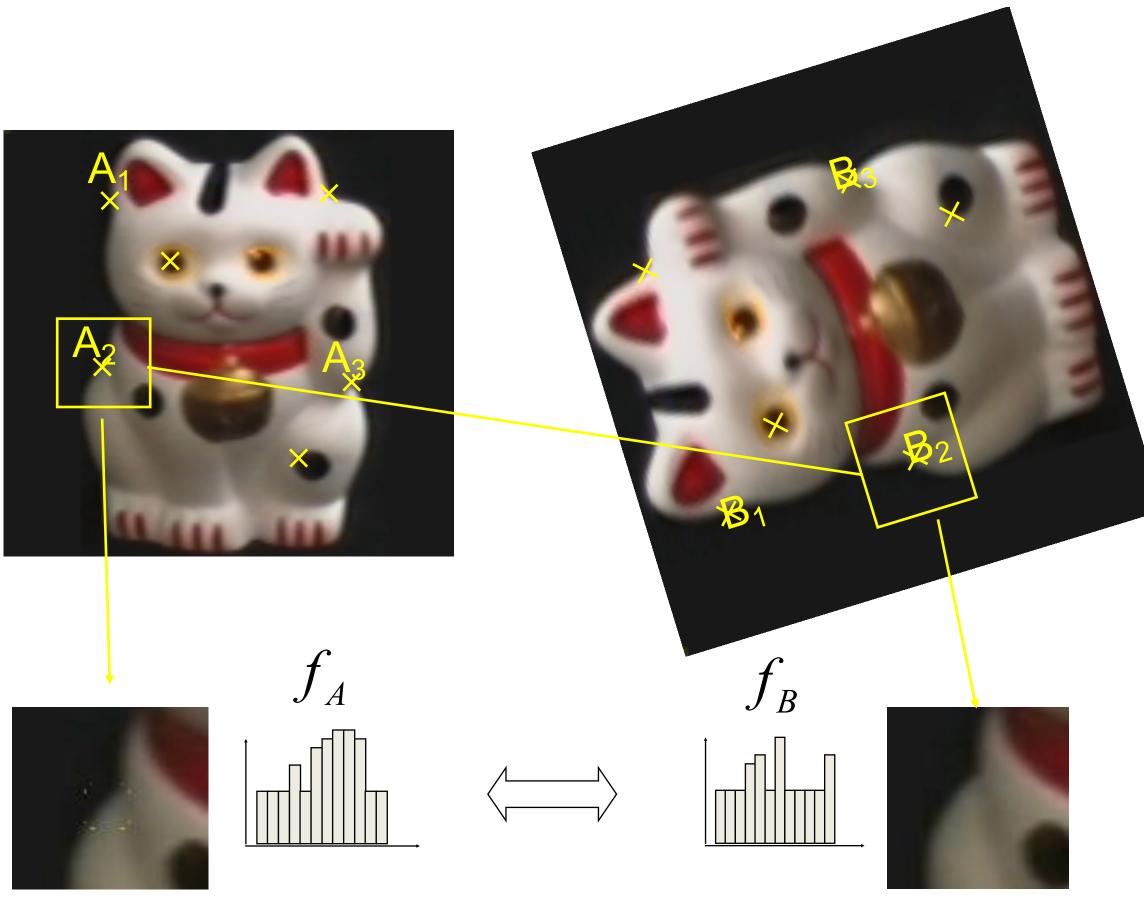
Idée générale : points d'intérêt et descripteurs



 $d(f_A, f_B) < T$

- 1. Trouver des points distinctifs
- 2. Définir une région autour de chaque point
- 3. Calculer un descripteur de la région
- 4. Apparier les descripteurs entre les 2 images (de façon robuste)

Idée générale: points d'intérêt et descripteurs

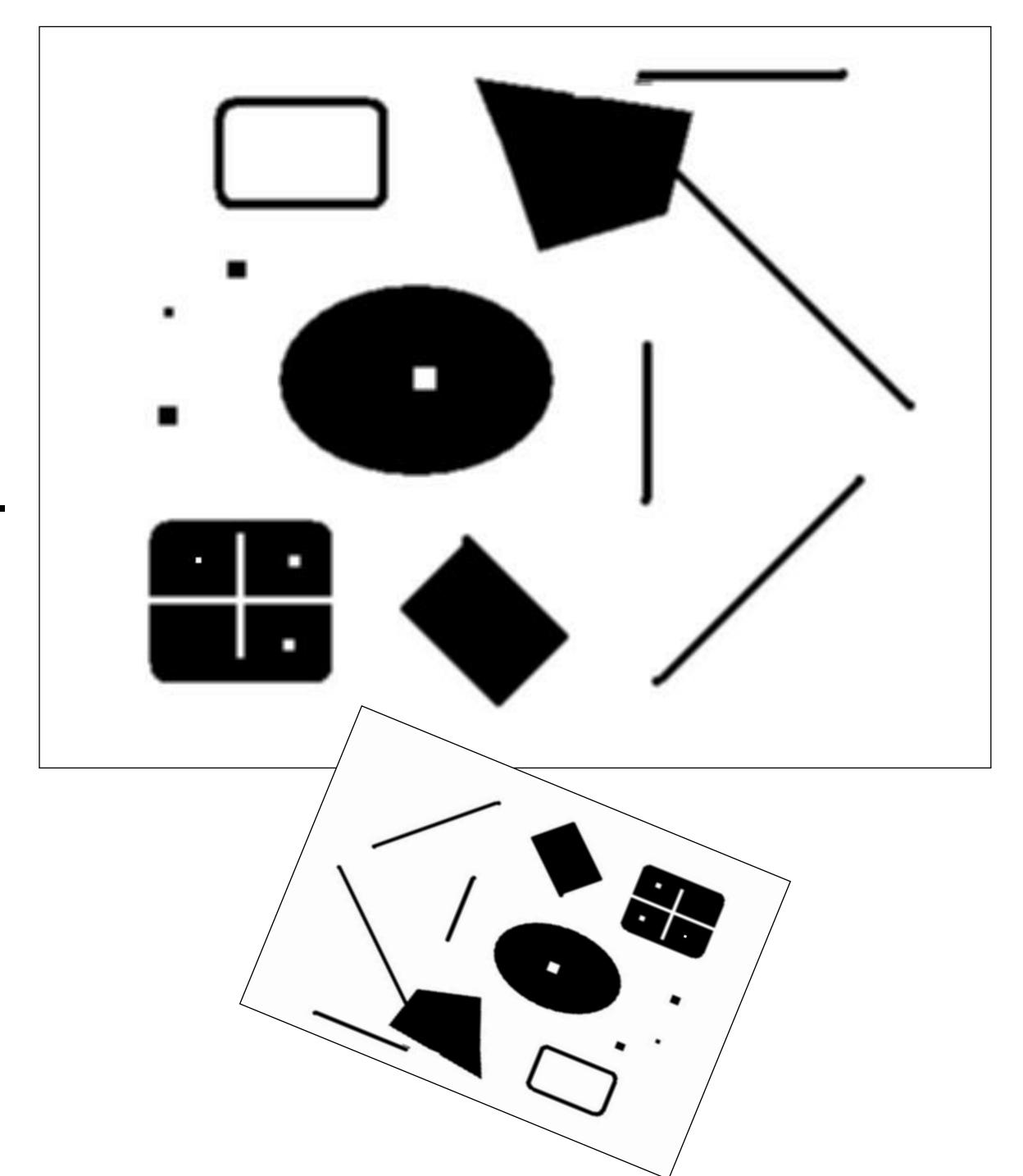


 $d(f_A, f_B) < T$

- 1. Trouver des points distinctifs
- 2. Définir une région autour de chaque point
- 3. Calculer un descripteur de la région
- 4. Apparier les descripteurs entre les 2 images (de façon robuste)

Localisation des points

- Voici une image.
- Tout à l'heure, je vous montrerai une version déformée de l'image.
- Identifiez des points sur l'image qui seront faciles à identifier lorsque l'image sera déformée.



Points d'intérêt: but

Détecter des points qui sont représentatifs et distincts

Choisir des points d'intérêt

Vous devez rencontrer un ami. Où lui donnez-vous rendez-vous?

13 Crédit : Derek Hoiem

Choisir des points d'intérêt

Vous devez rencontrer un ami. Où lui donnez-vous rendez-vous?

14 Crédit : Derek Hoiem

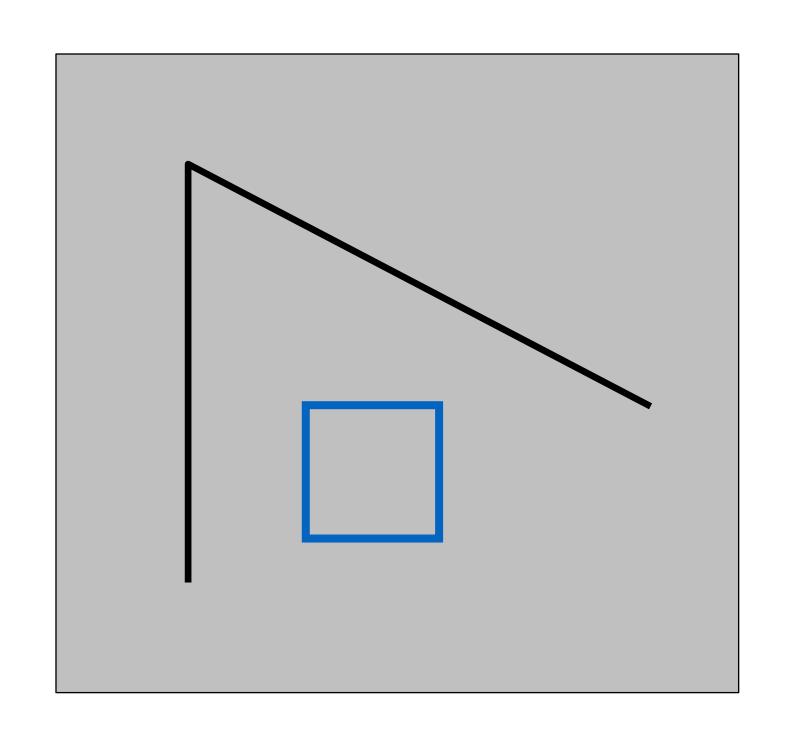
Choisir des points d'intérêt

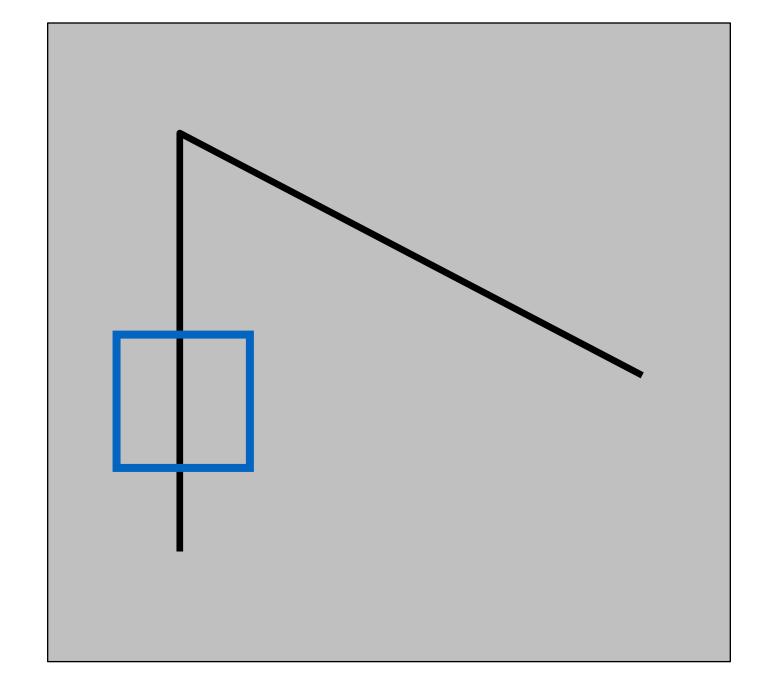
Coins Sommets

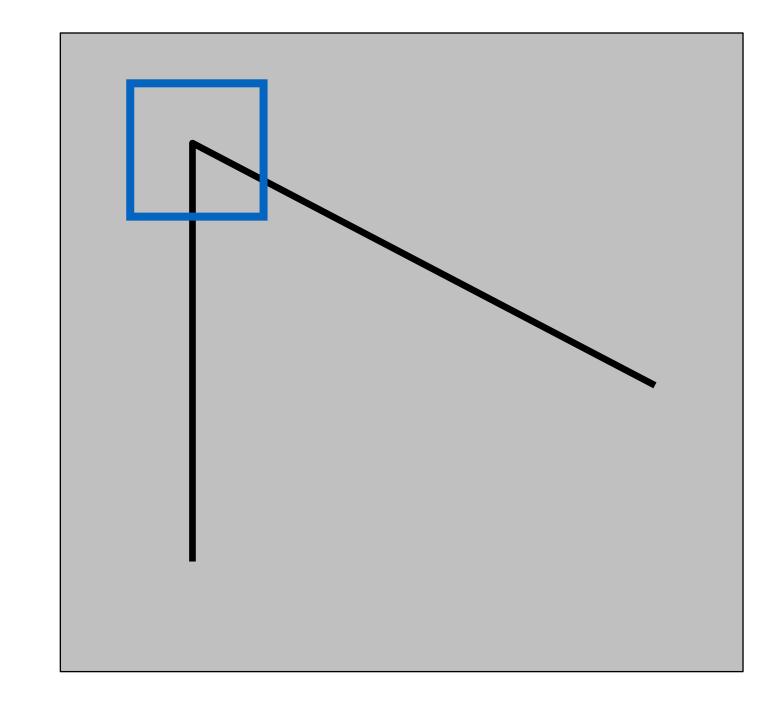


15 Crédit : Derek Hoiem

Détecteur de coins de Harris : intuition





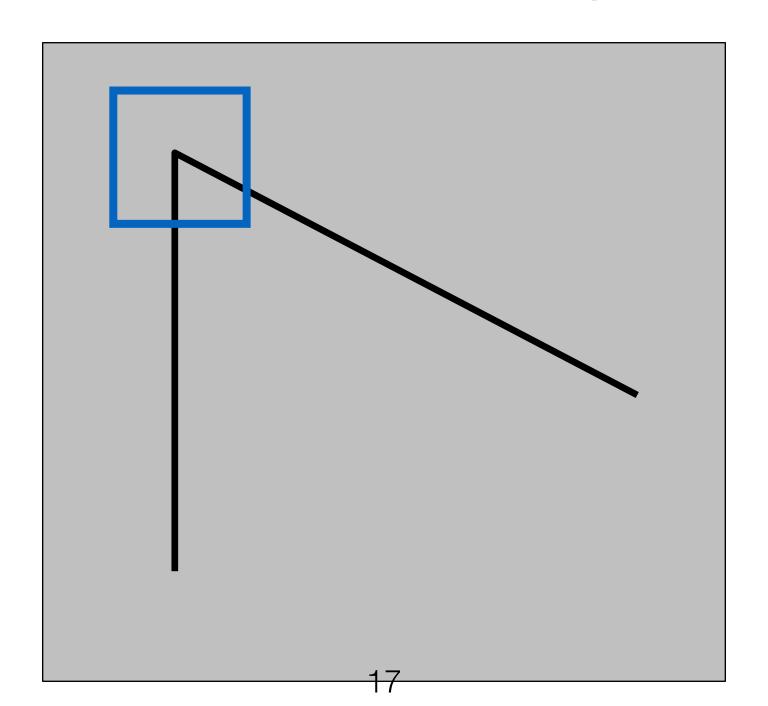


région uniforme aucun changement

arête
pas de changement le
long de l'arête

coin
changement dans toutes
les directions

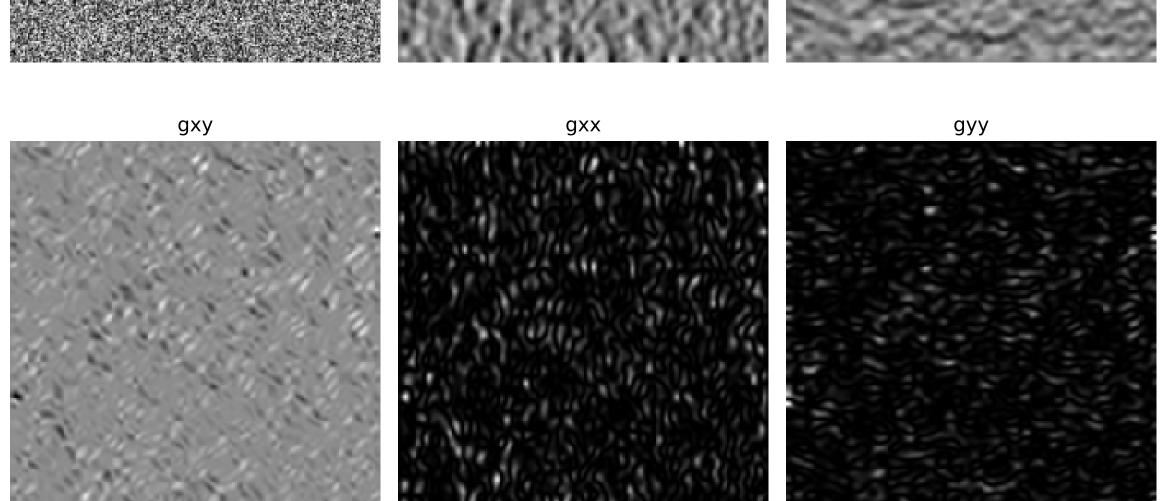
- Nous devrions reconnaître le point en considérant seulement une petite fenêtre autour du point;
- Si on déplace la fenêtre dans n'importe quelle direction, le changement d'intensité devrait être important.



• Intuition : les valeurs propres de la matrice de covariance des gradients d'une fenêtre de l'image capture le niveau de variation dans cette fenêtre

$$\mathbf{M} = \left[egin{array}{ccc} \sum g_x^2 & \sum g_x g_y \ \sum g_y^2 & \sum g_y^2 \end{array}
ight]$$

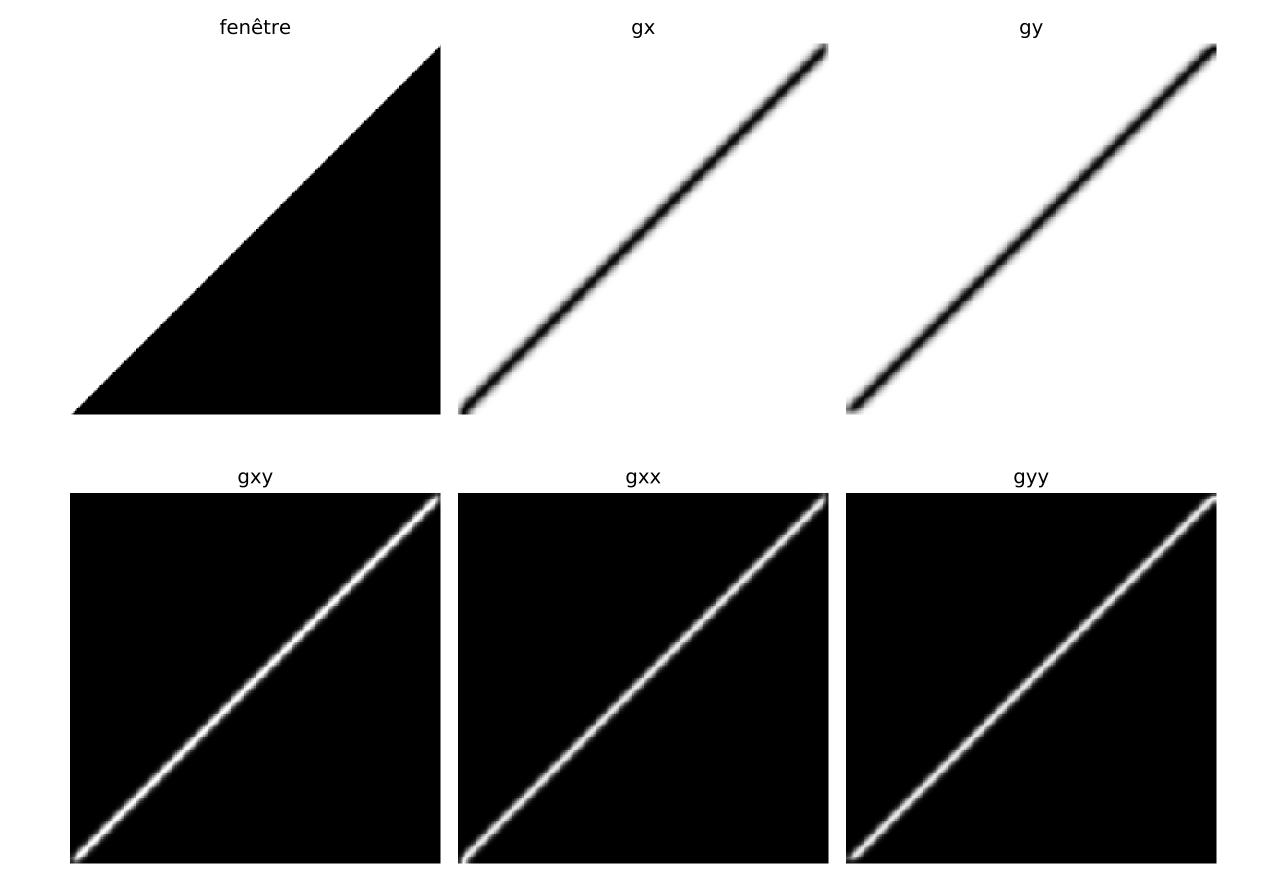
valeurs propres de M: 2,6 et 2,5



• Intuition : les valeurs propres de la matrice de covariance des gradients d'une fenêtre de l'image capture le niveau de variation dans cette fenêtre

$$\mathbf{M} = \begin{bmatrix} \sum g_x^2 & \sum g_x g_y \\ \sum g_x g_y & \sum g_y^2 \end{bmatrix}$$

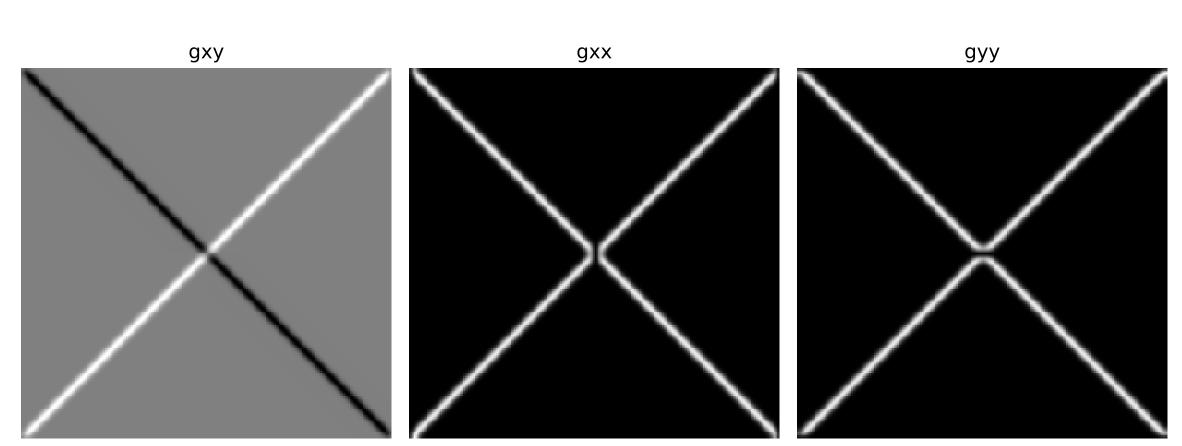
valeurs propres de M: 0,04 et 33



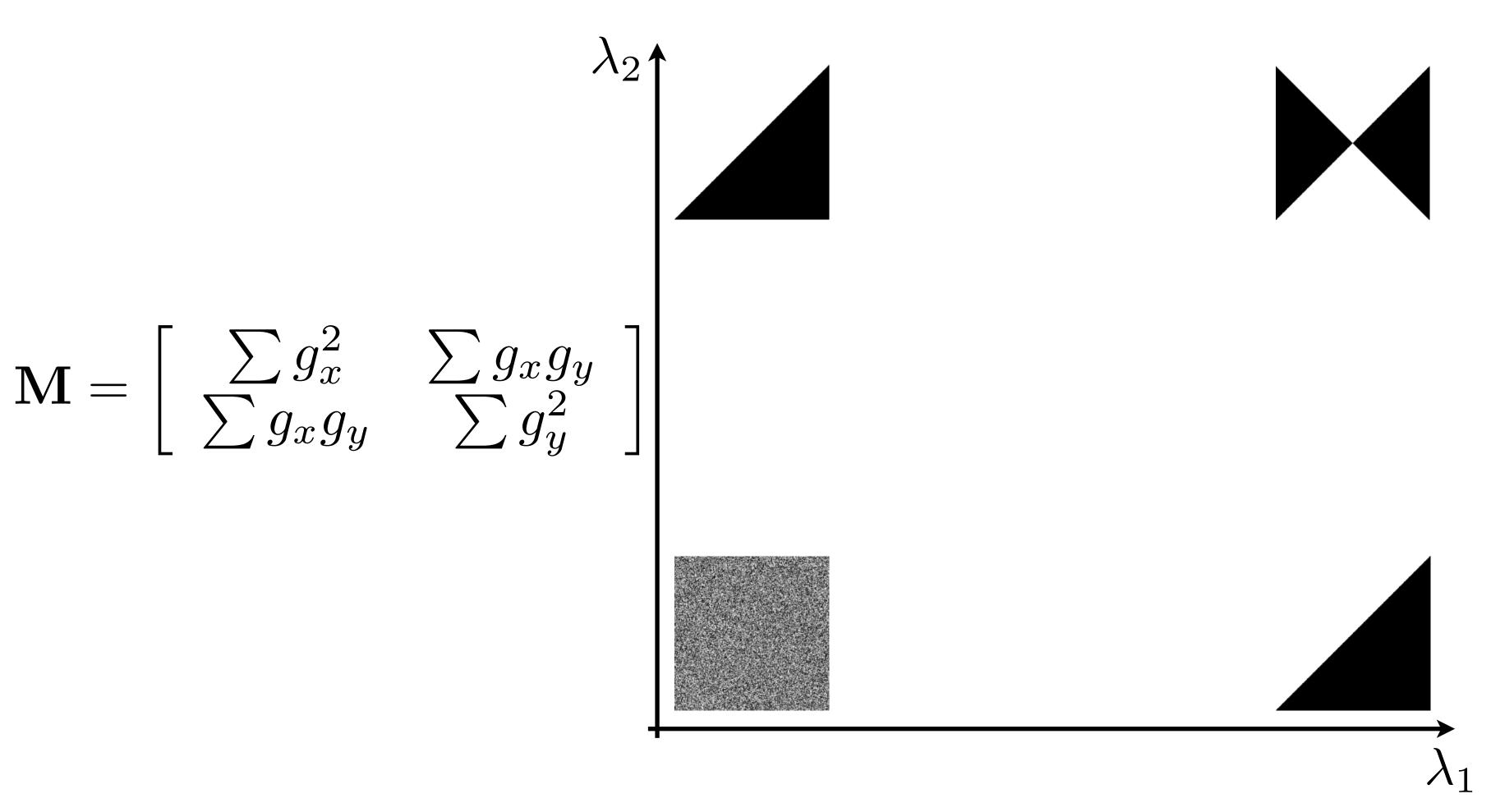
 Intuition : les valeurs propres de la matrice de covariance des gradients d'une fenêtre de l'image capture le niveau de variation dans cette fenêtre

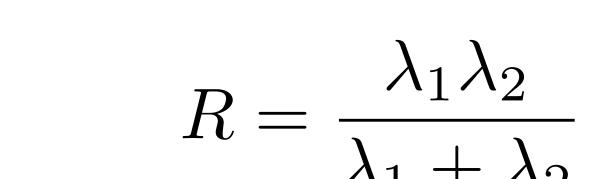
$$\mathbf{M} = \begin{bmatrix} \sum g_x^2 & \sum g_x g_y \\ \sum g_x g_y & \sum g_y^2 \end{bmatrix}$$

valeurs propres de M: 32,4 et 32,4



Interprétation des valeurs propres





Détecteur de Harris: math

Rappel

$$\det \mathbf{M} = \lambda_1 \lambda_2$$
$$\operatorname{tr} = \lambda_1 + \lambda_2$$

En pratique, nous n'avons pas besoin de calculer les valeurs propres

$$\mathbf{M} = \begin{bmatrix} \sum g_x^2 & \sum g_x g_y \\ \sum g_x g_y & \sum g_y^2 \end{bmatrix} \qquad R = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} \qquad R = \frac{\det \mathbf{M}}{\operatorname{tr} \mathbf{M}}$$

$$R = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$

$$R = \frac{\det \mathbf{M}}{\operatorname{tr} \mathbf{M}}$$

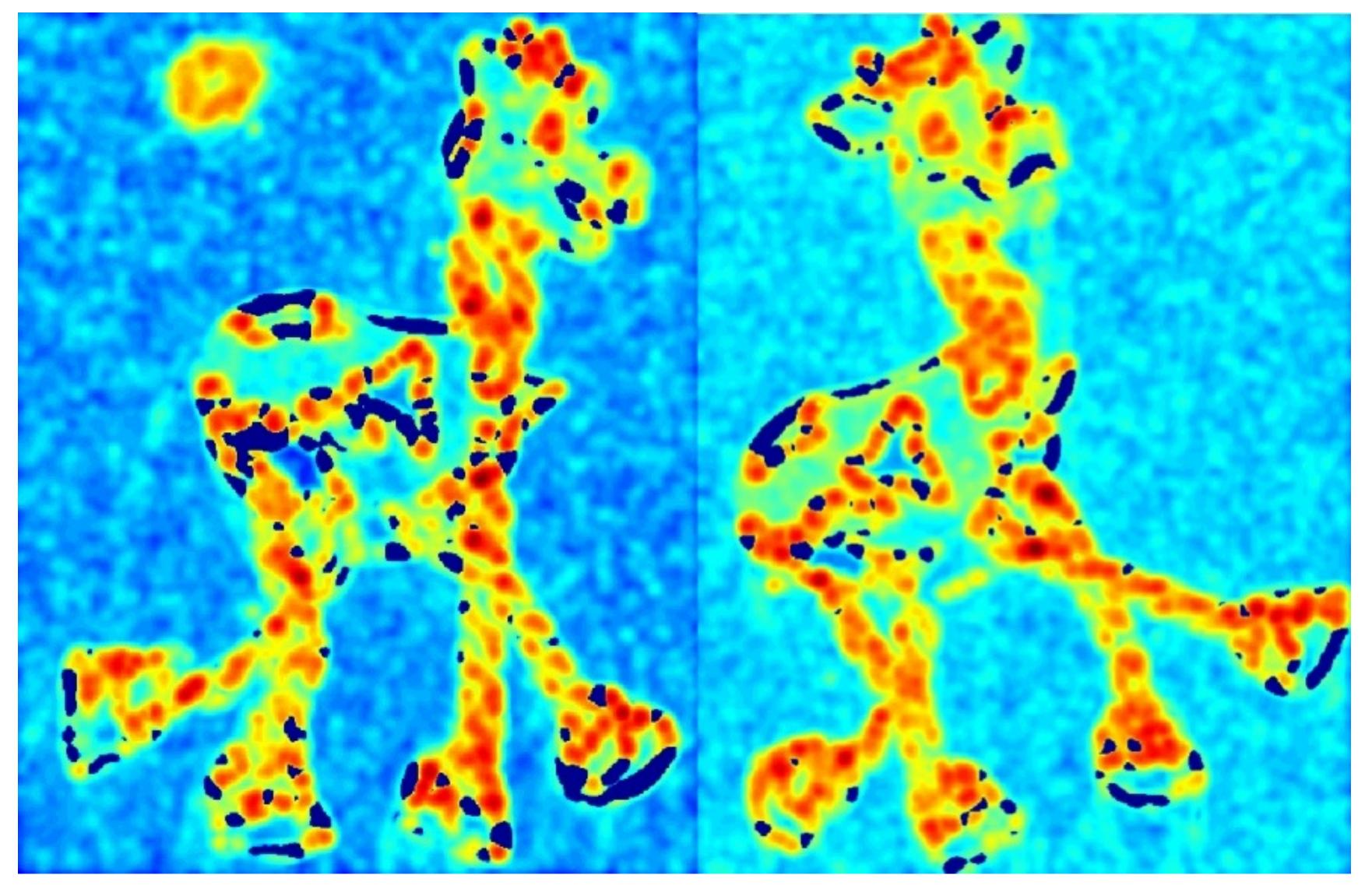
$$\det \mathbf{M} = m_{11}m_{22} - m_{21}m_{22}$$
$$\operatorname{tr} \mathbf{M} = m_{11} + m_{22}$$

Algorithme

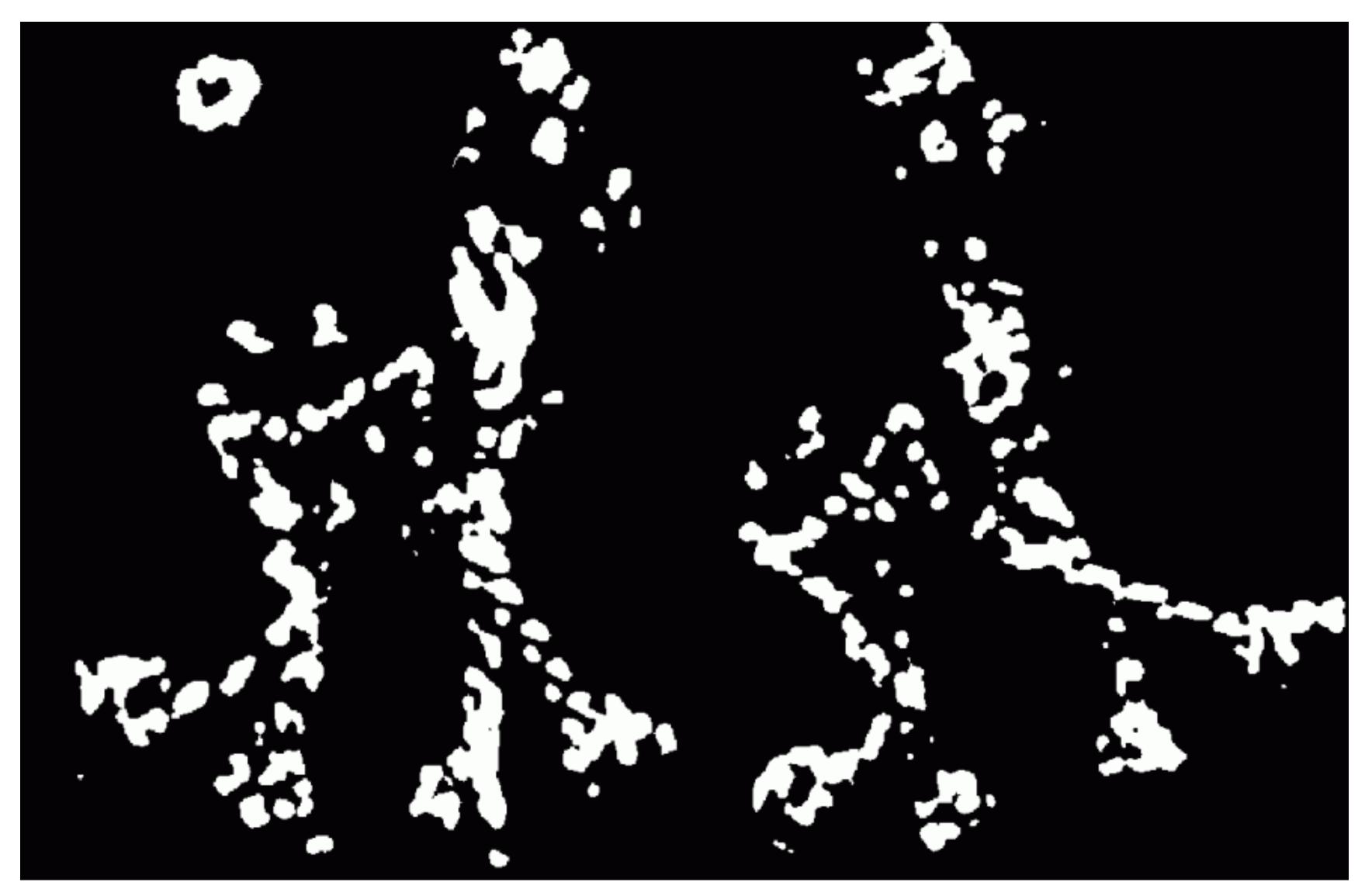
- Calculer R pour tous les points dans l'image
- Appliquer: R > seuil
- Retenir les maximums locaux seulement

Exemple: images

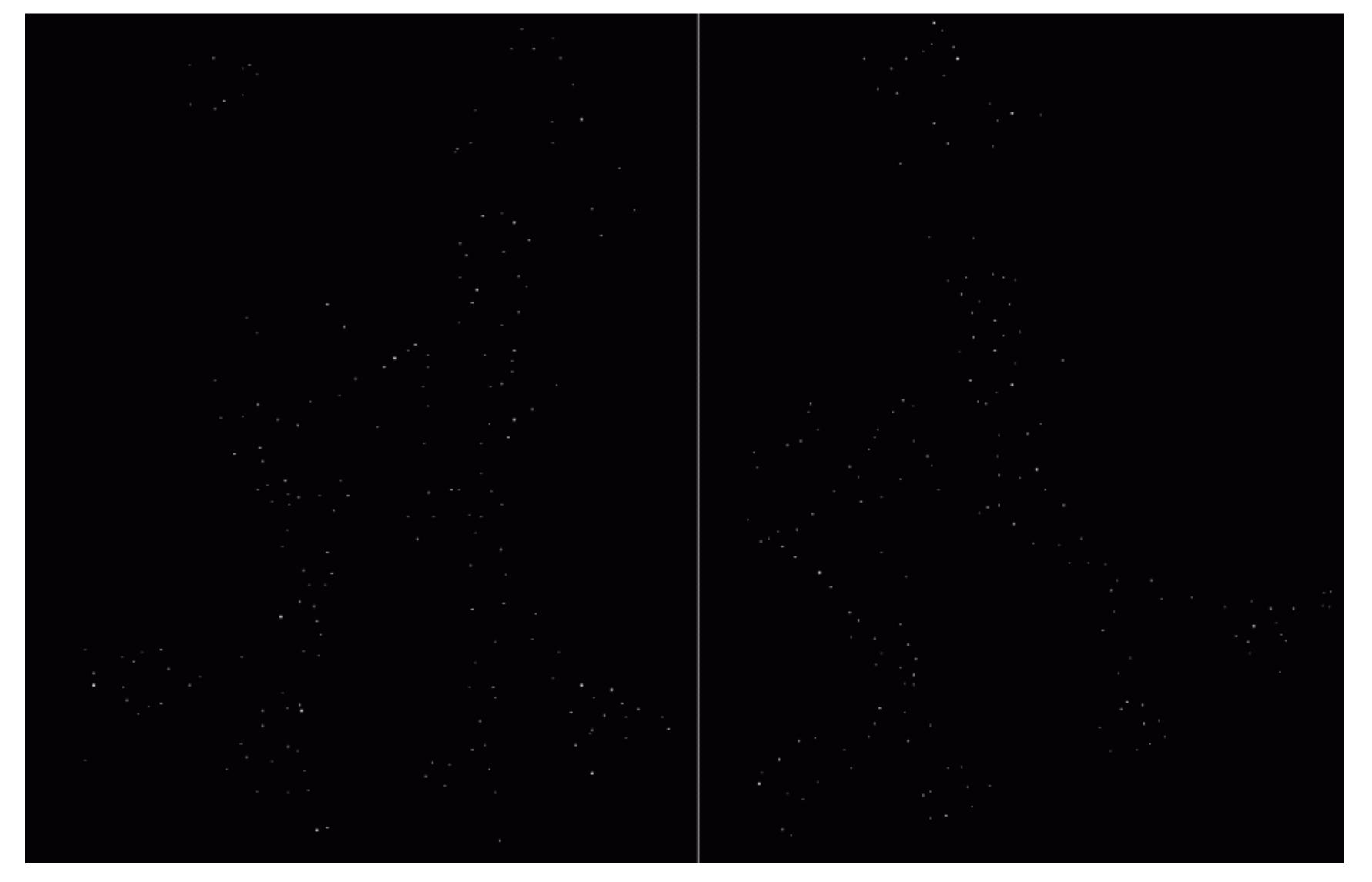
Exemple: calculer R



Exemple: appliquer R > seuil



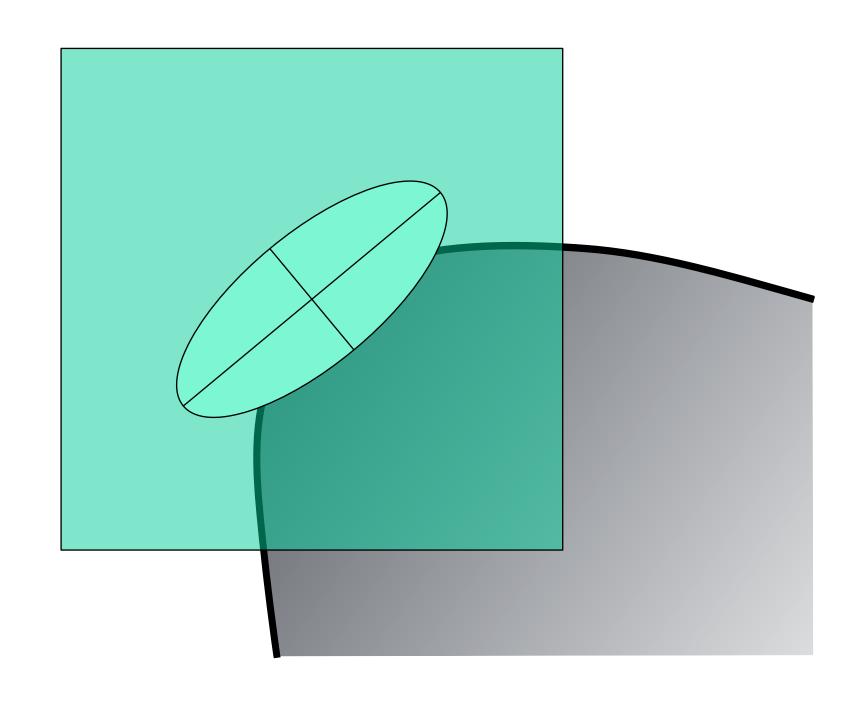
Exemple: maximum locaux

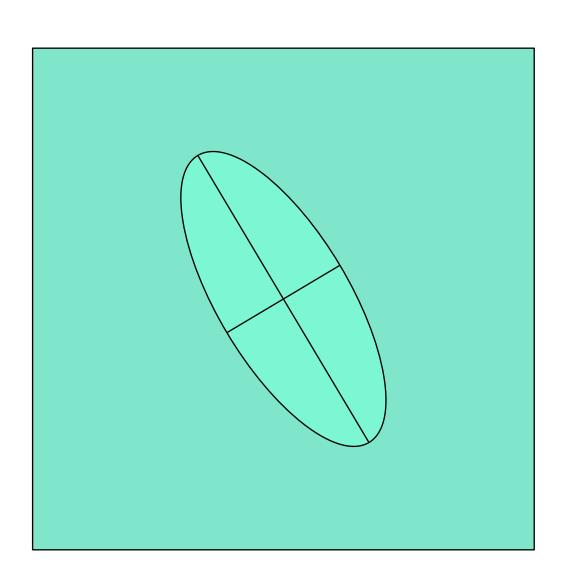


Exemple : résultats!

Détecteur de Harris : propriétés

Invariance à la rotation

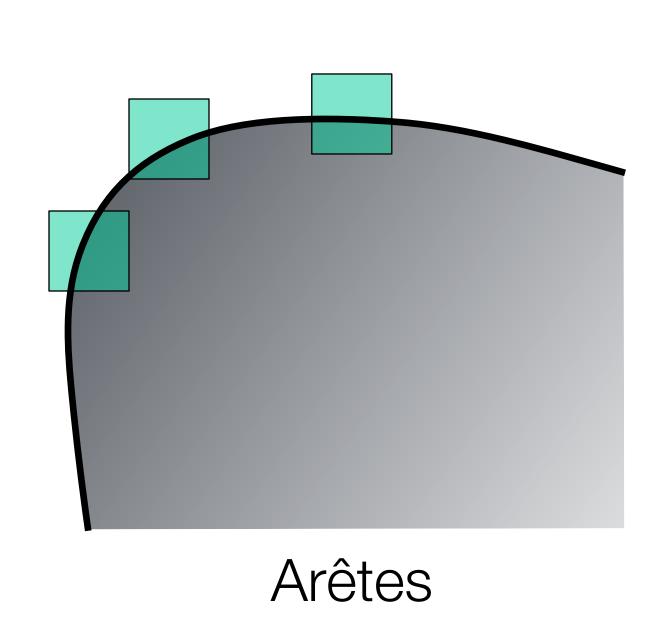


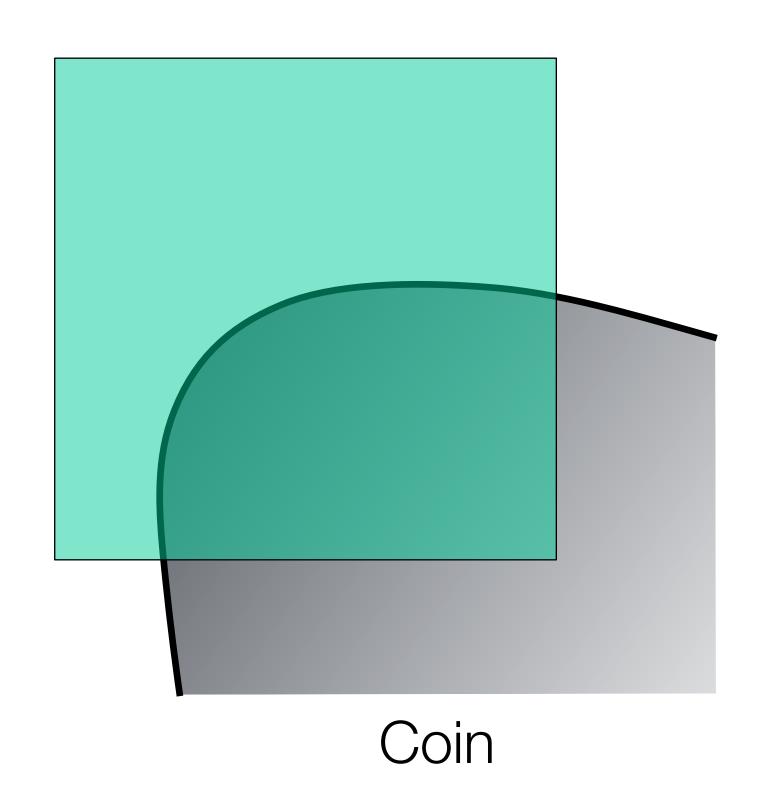


L'ellipse tourne, mais la longueur de ses axes (valeurs propres) restent les mêmes

Détecteur Harris: propriétés

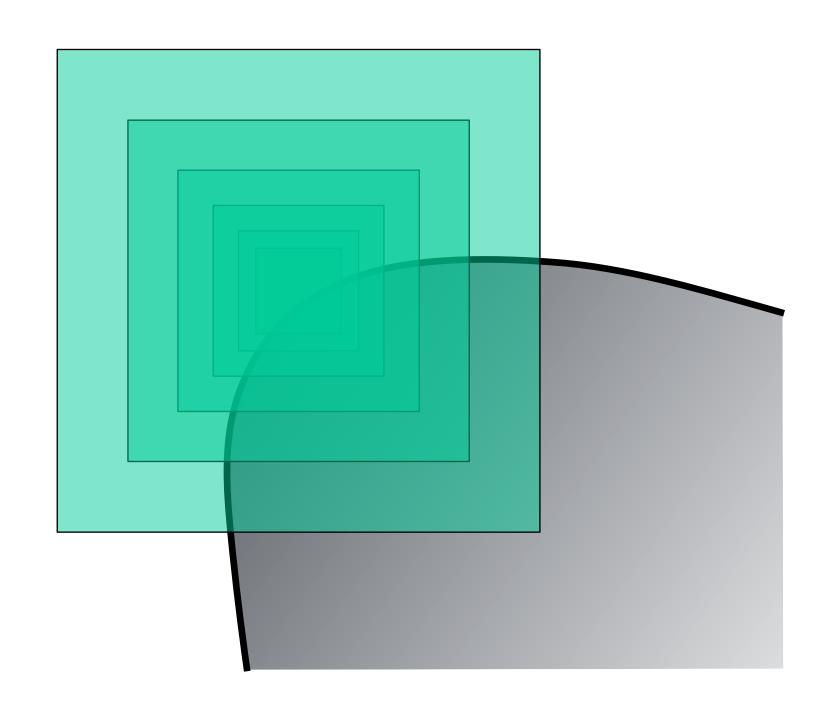
• Dépend de la taille de la fenêtre!





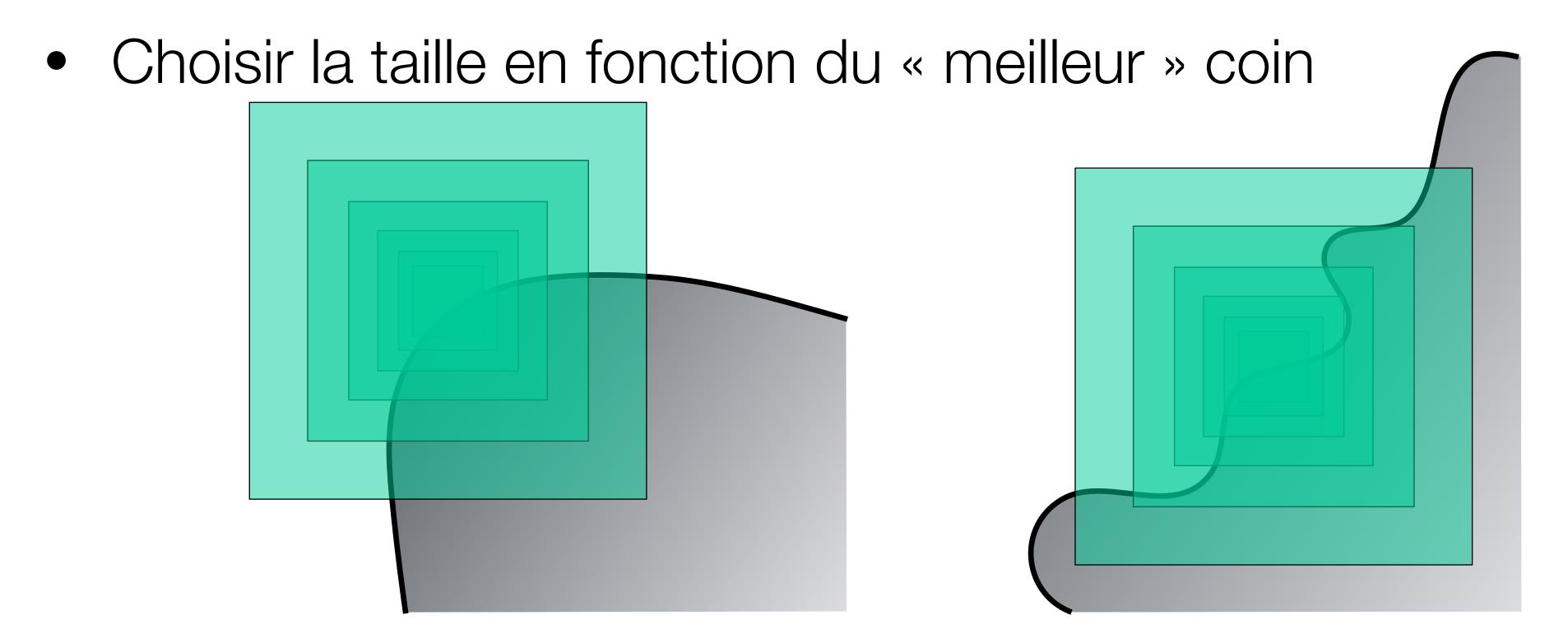
Invariance à l'échelle

- Calculer réponse sur plusieurs échelles
- Réponse est similaire même si on réduit la taille de l'image

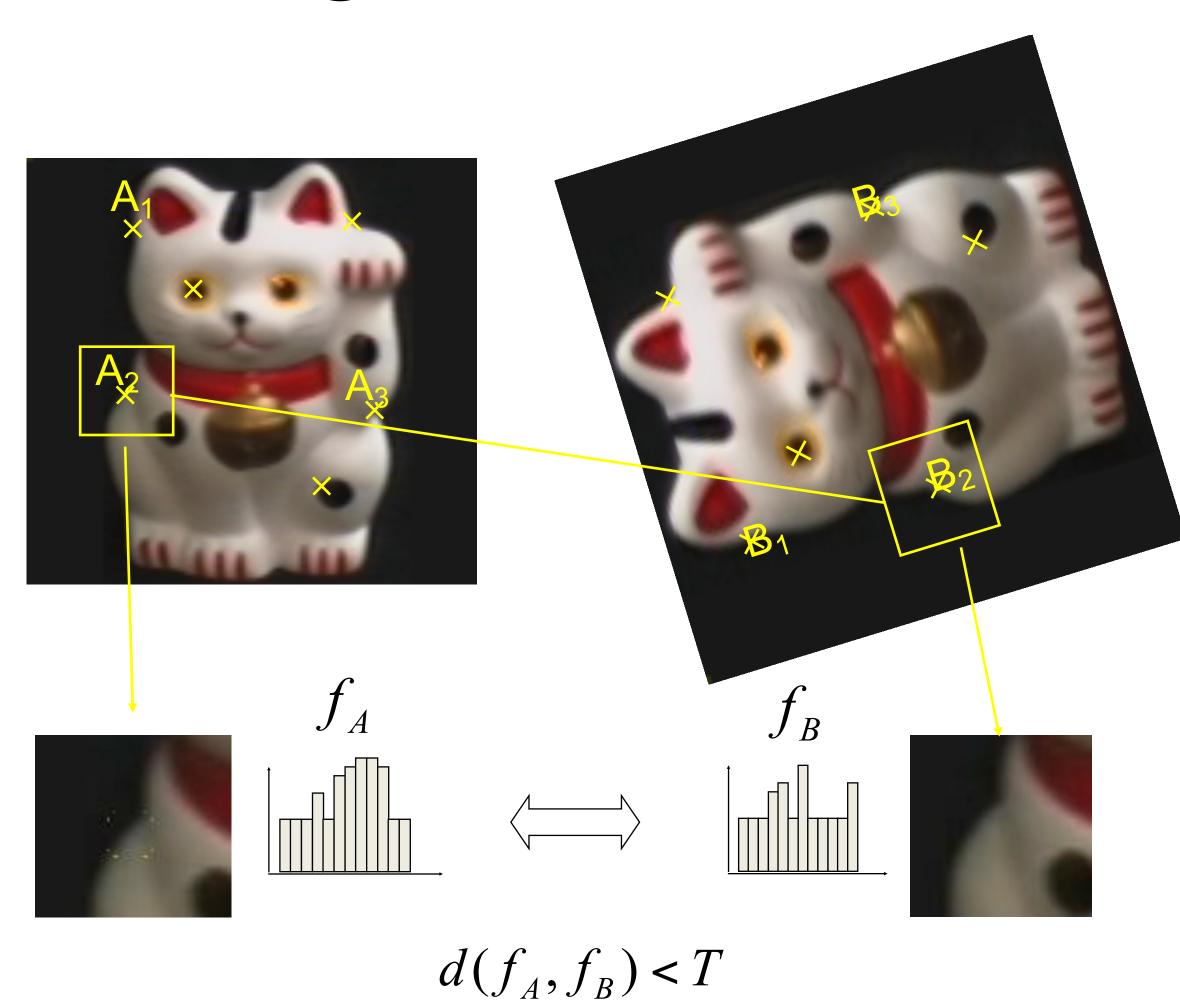


Invariance à l'échelle

 Problème : comment déterminer la taille de la fenêtre indépendamment pour chaque image?



Idée générale: points d'intérêt et descripteurs



1. Trouver des points distinctifs

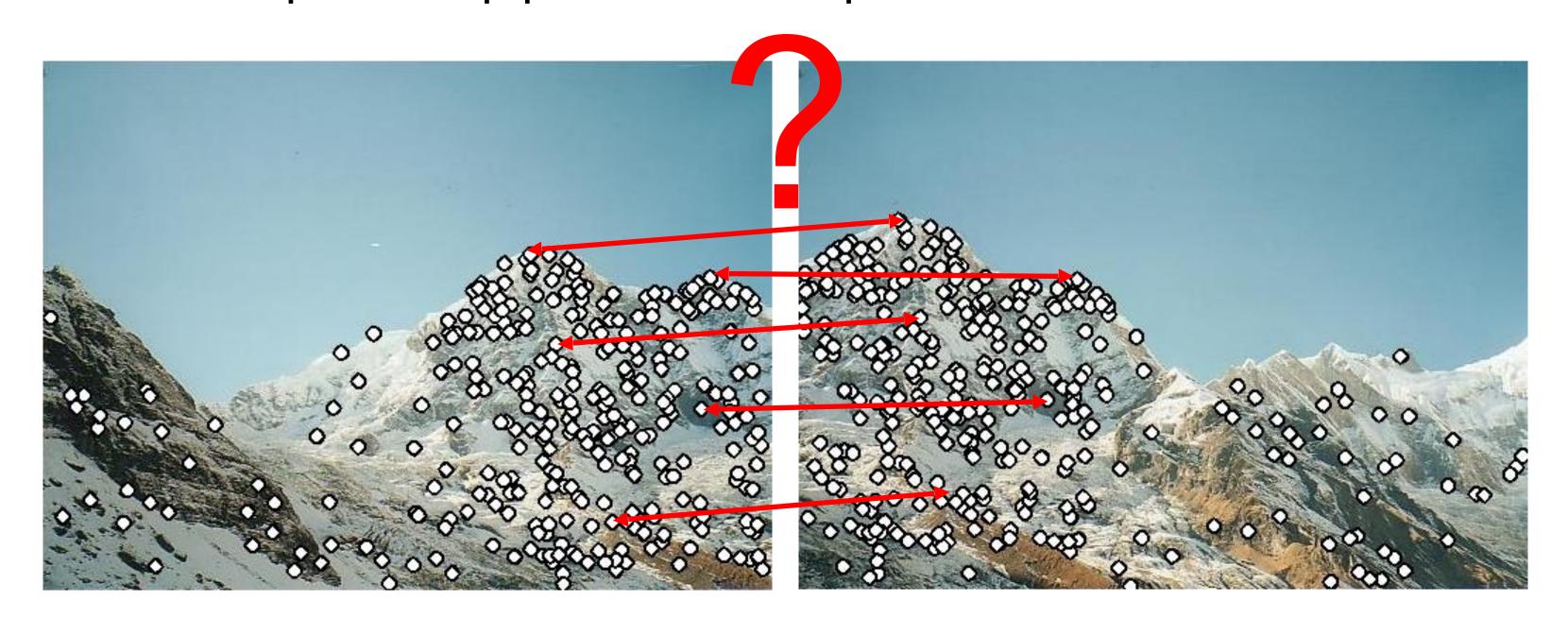
2. Définir une région autour de chaque point

3. Calculer un descripteur de la région

4. Apparier les descripteurs entre les 2 images (de façon robuste)

Descripteurs

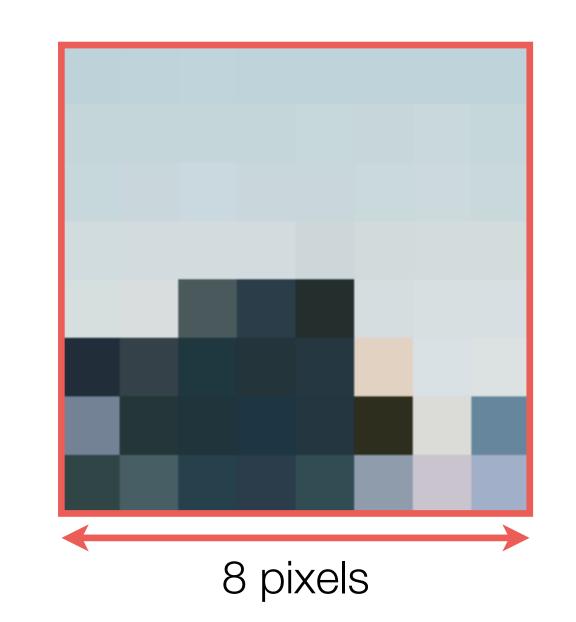
• Comment faire pour apparier nos points d'intérêt?

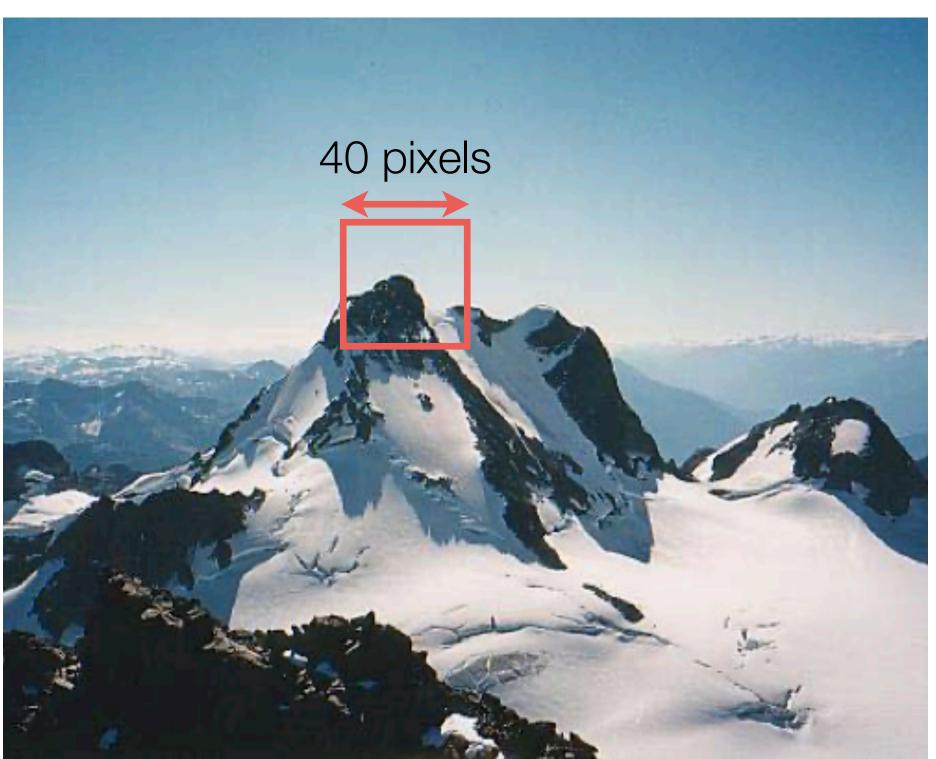


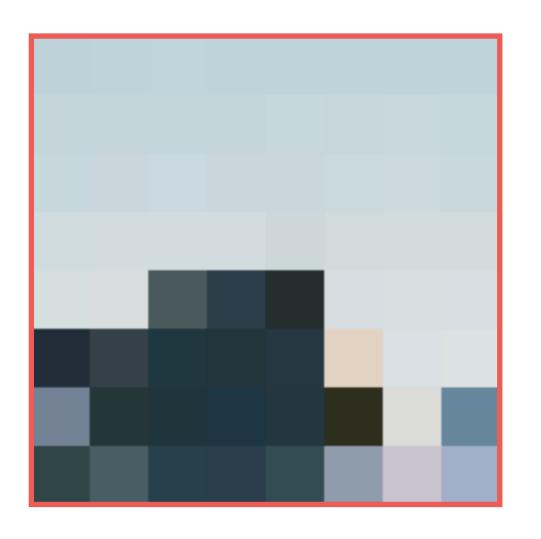
Descripteur doit être: distinct invariant

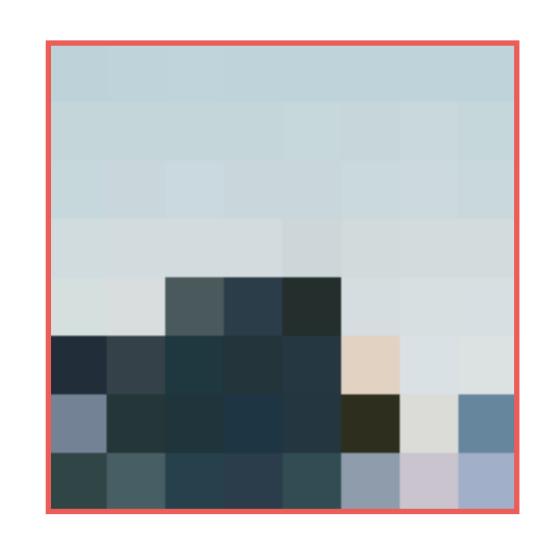
Descripteur simple: recette

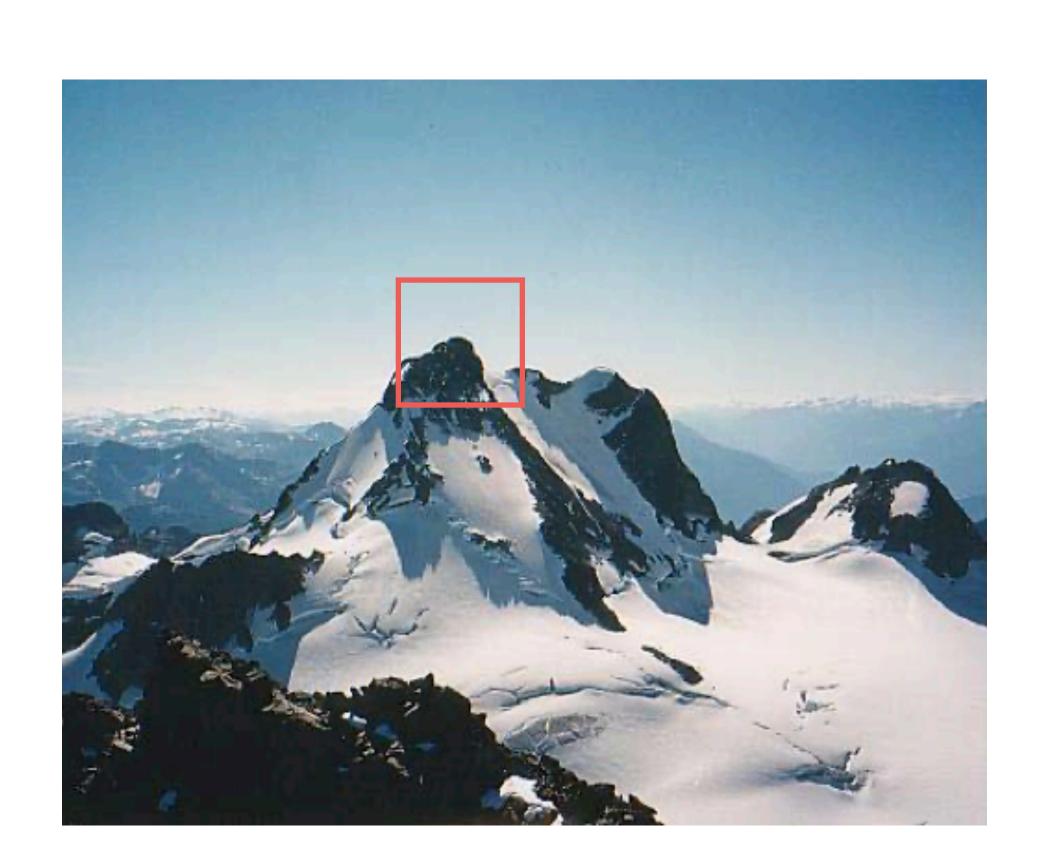
- 1. Calculer une fenêtre de 40 x 40 pixels autour du point d'intérêt
- 2. Sous-échantillonner la fenêtre à 5x l'échelle (donc 8x8)

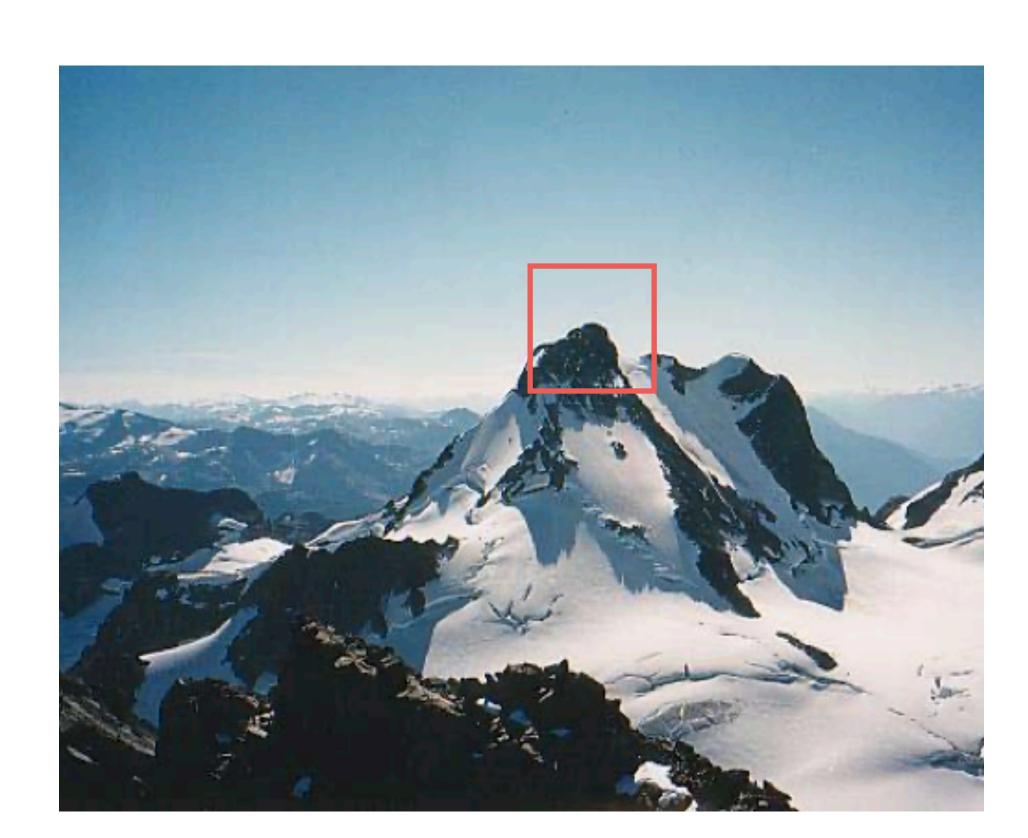


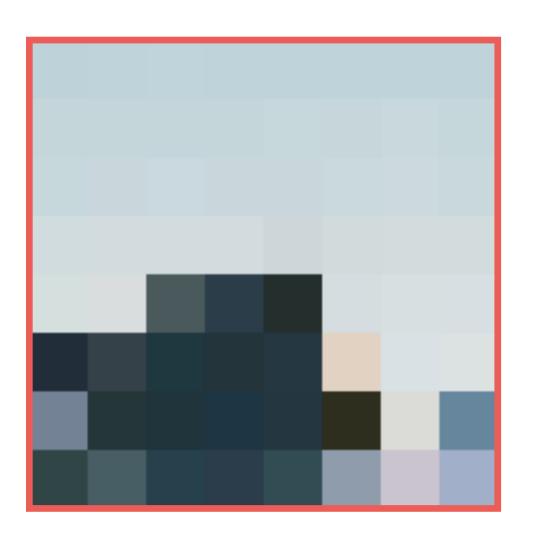


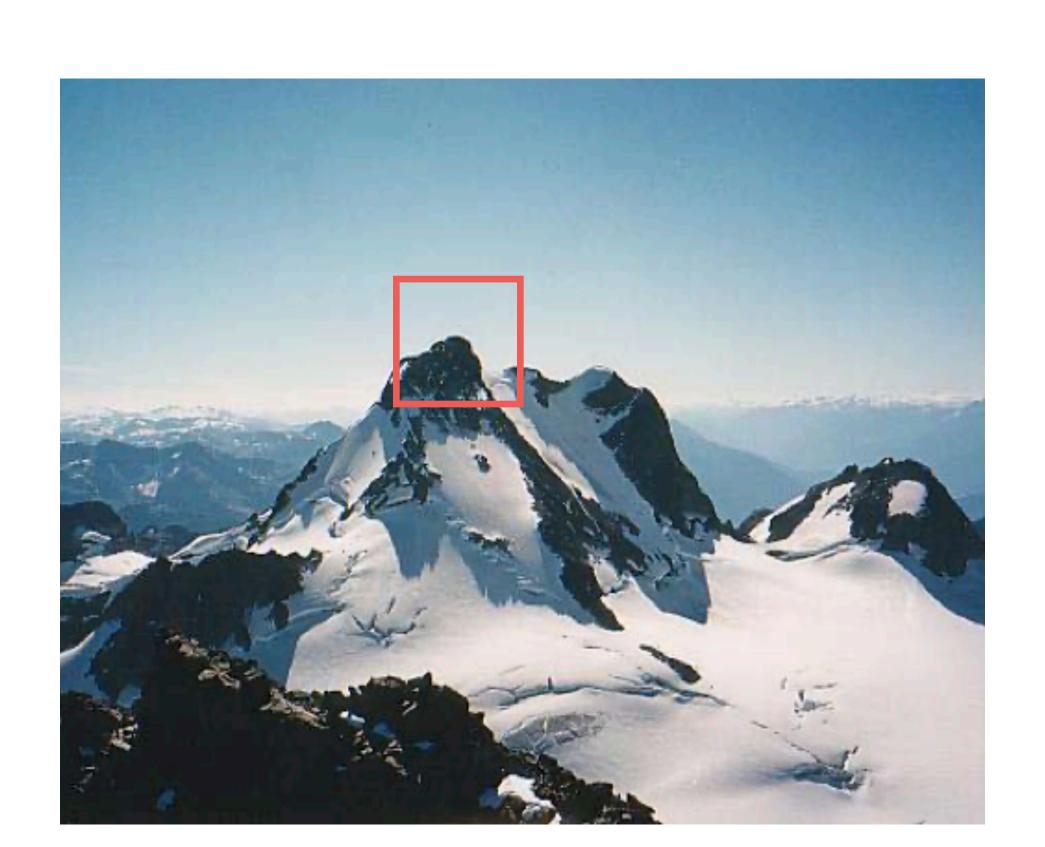




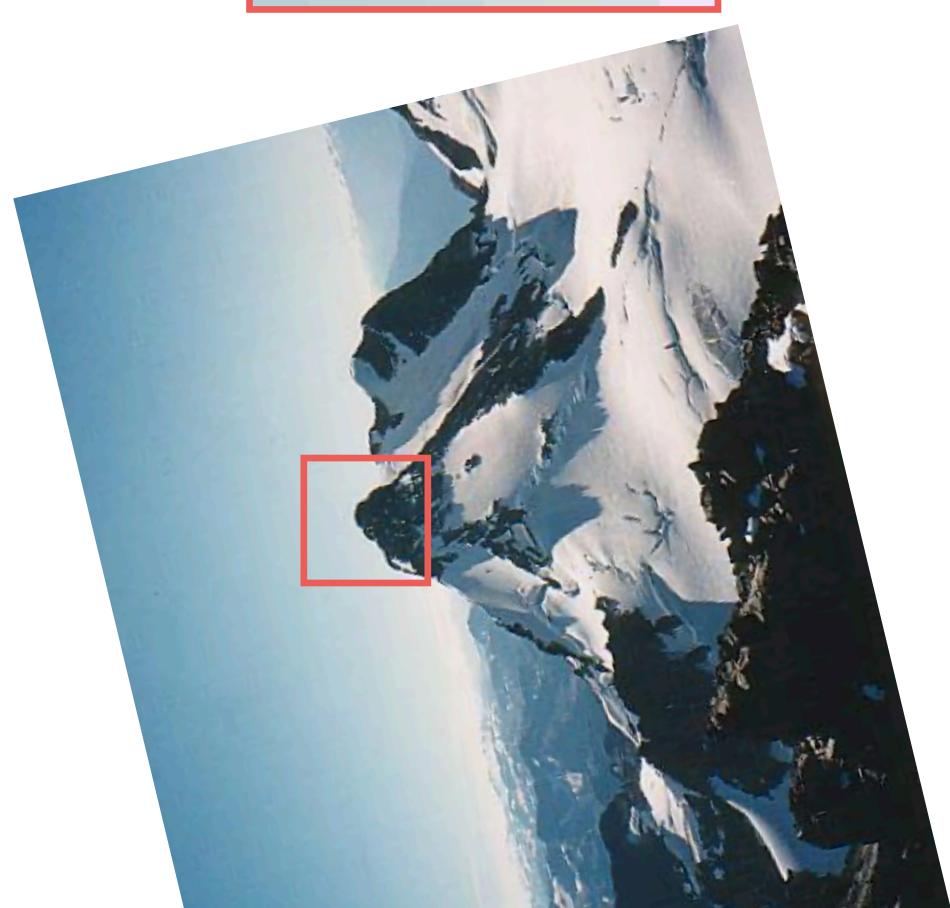






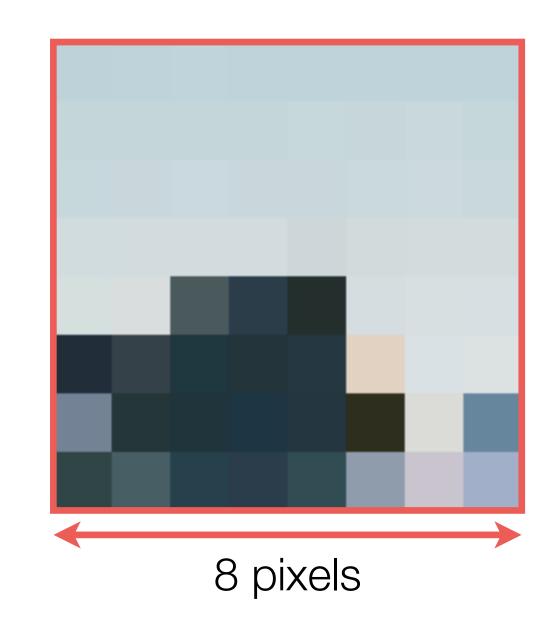


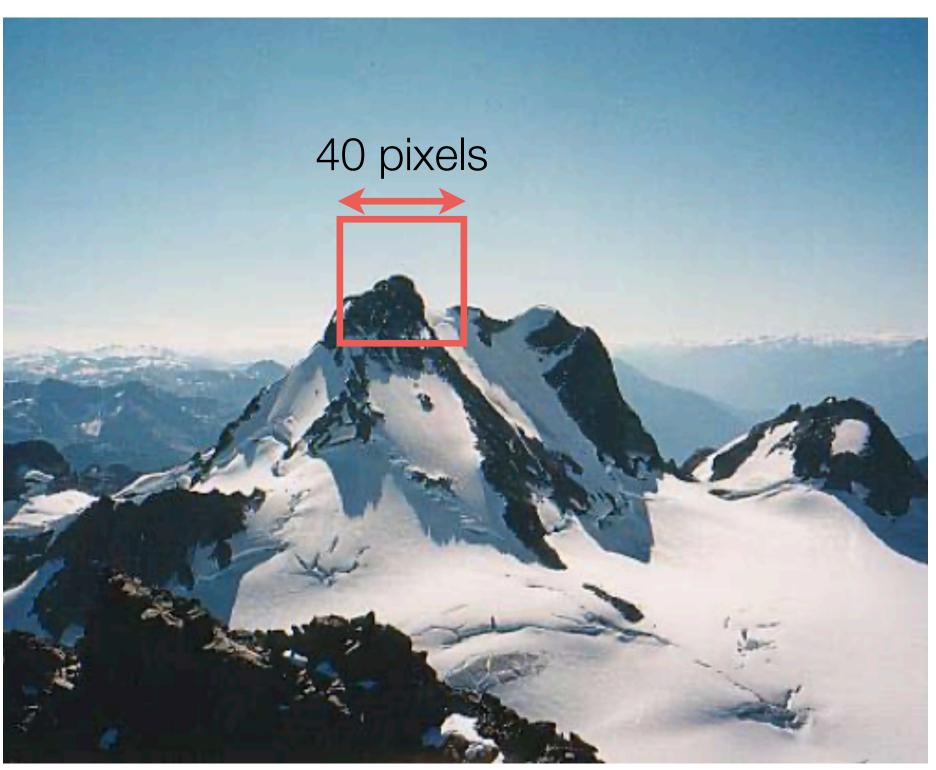


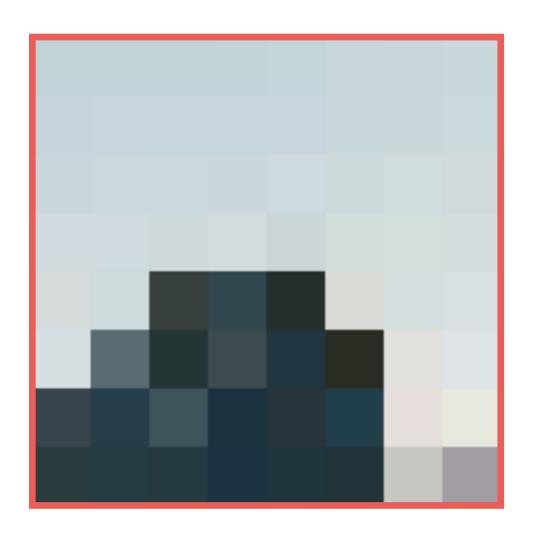


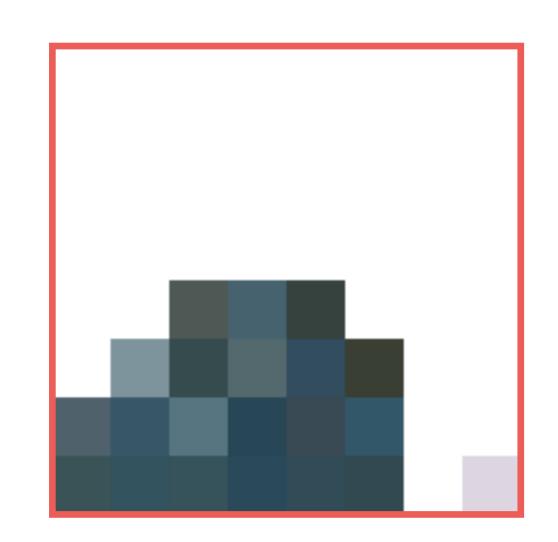
Descripteur simple: recette

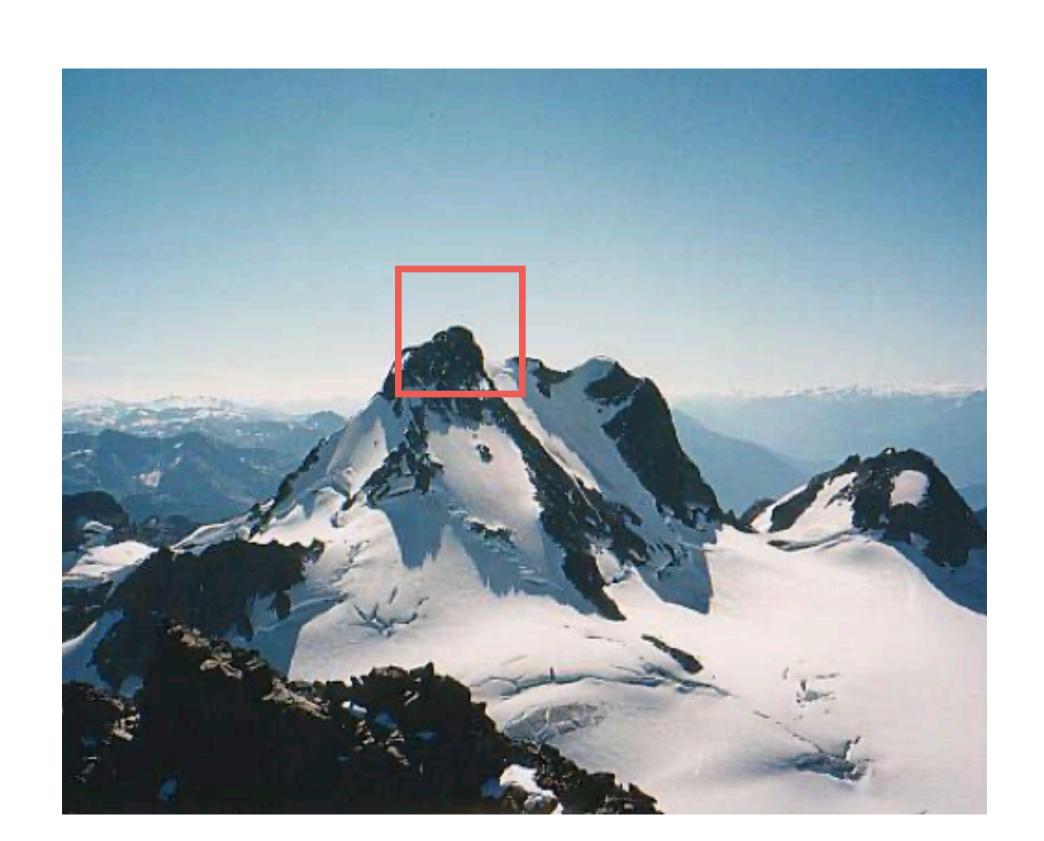
- 1. Calculer une fenêtre de 40 x 40 pixels autour du point d'intérêt
- 2. Appliquer une rotation selon l'angle du gradient à ce pixel
- 3. Sous-échantillonner la fenêtre à 5x l'échelle (donc 8x8)







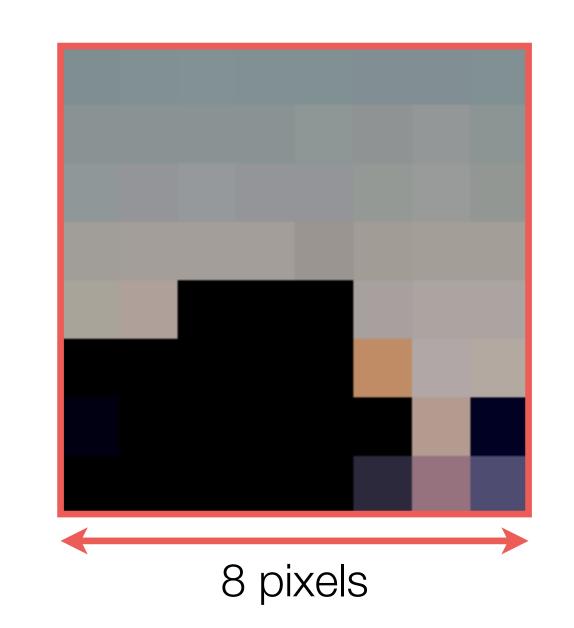


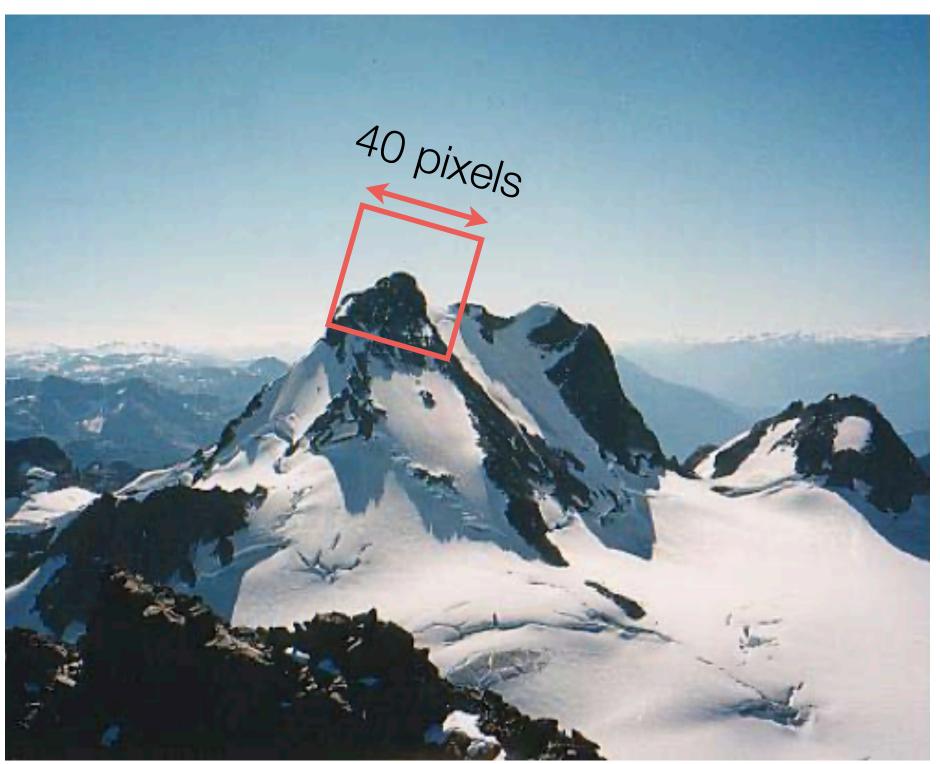


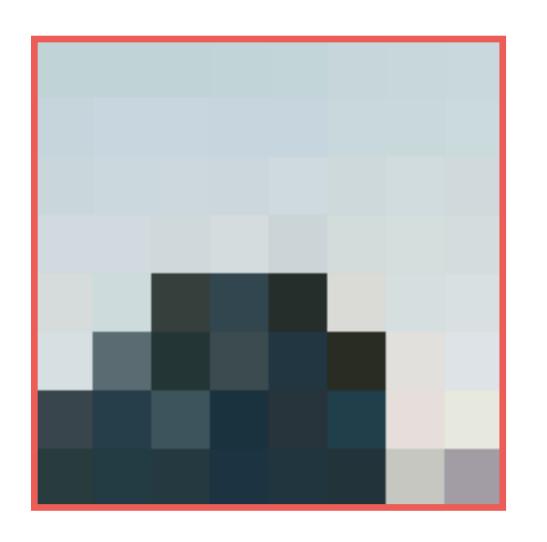
Descripteur simple: recette

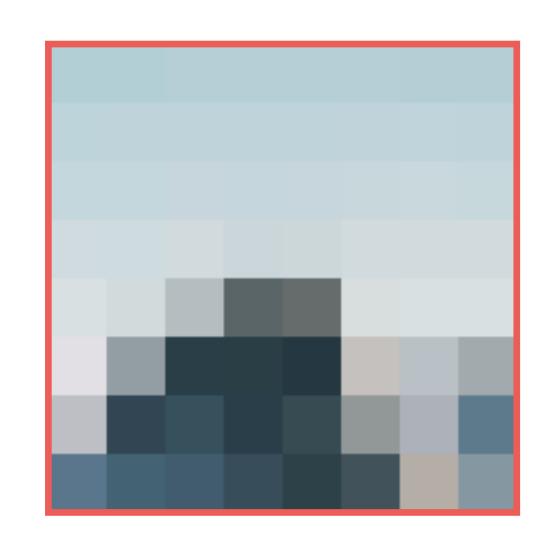
- 1. Calculer une fenêtre de 40 x 40 pixels autour du point d'intérêt
- 2. Appliquer une rotation selon l'angle du gradient à ce pixel
- 3. Sous-échantillonner la fenêtre à 5x l'échelle (donc 8x8)

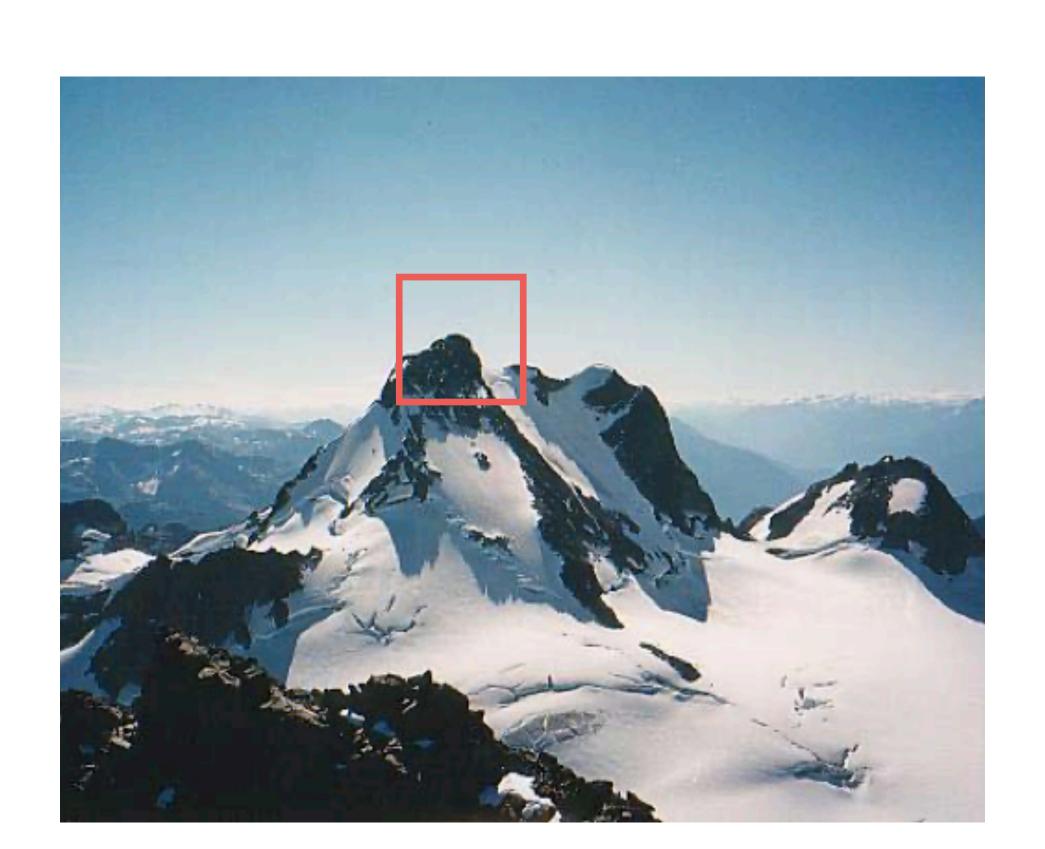
4. Normaliser :
$$l' = \frac{l - \mu}{\sigma}$$





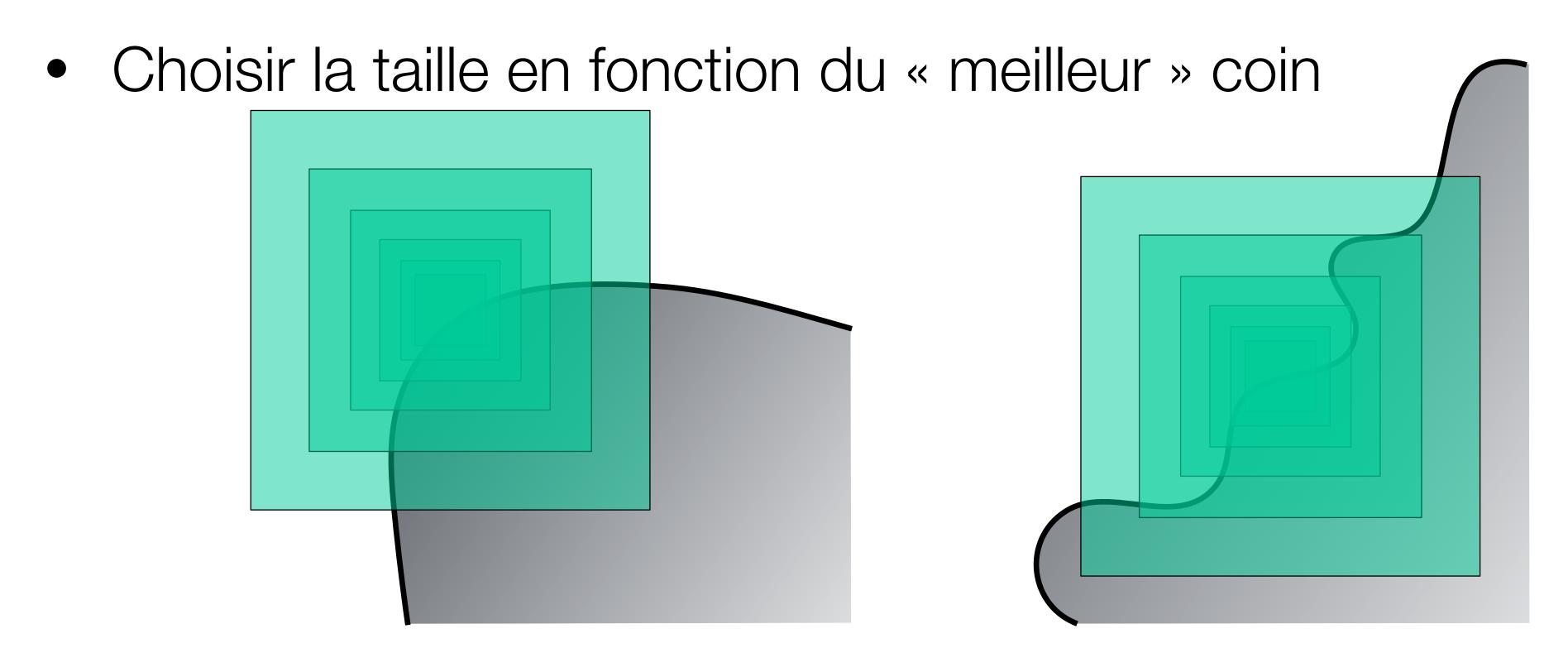






Invariance à l'échelle

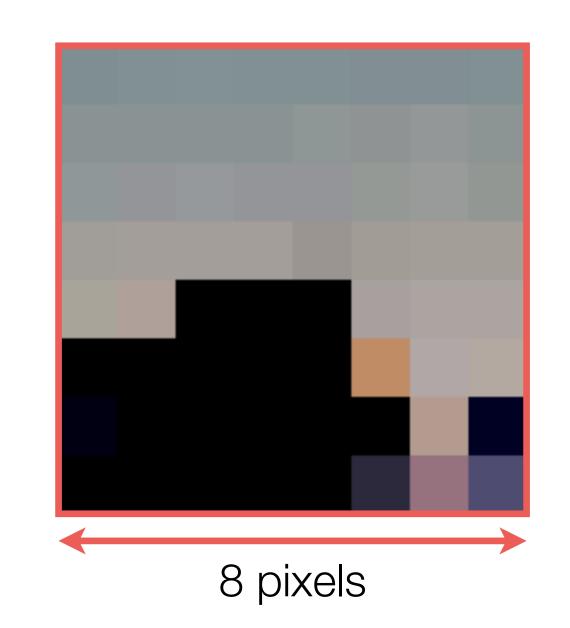
• Problème : comment déterminer la taille de la fenêtre indépendamment pour chaque image?

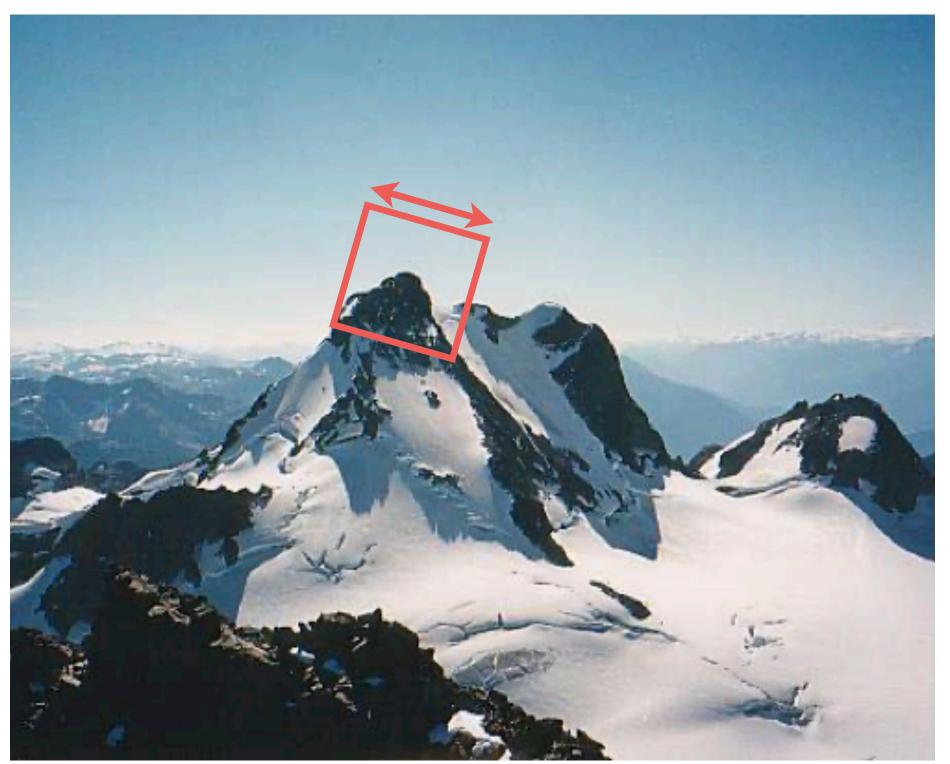


Descripteur simple: recette

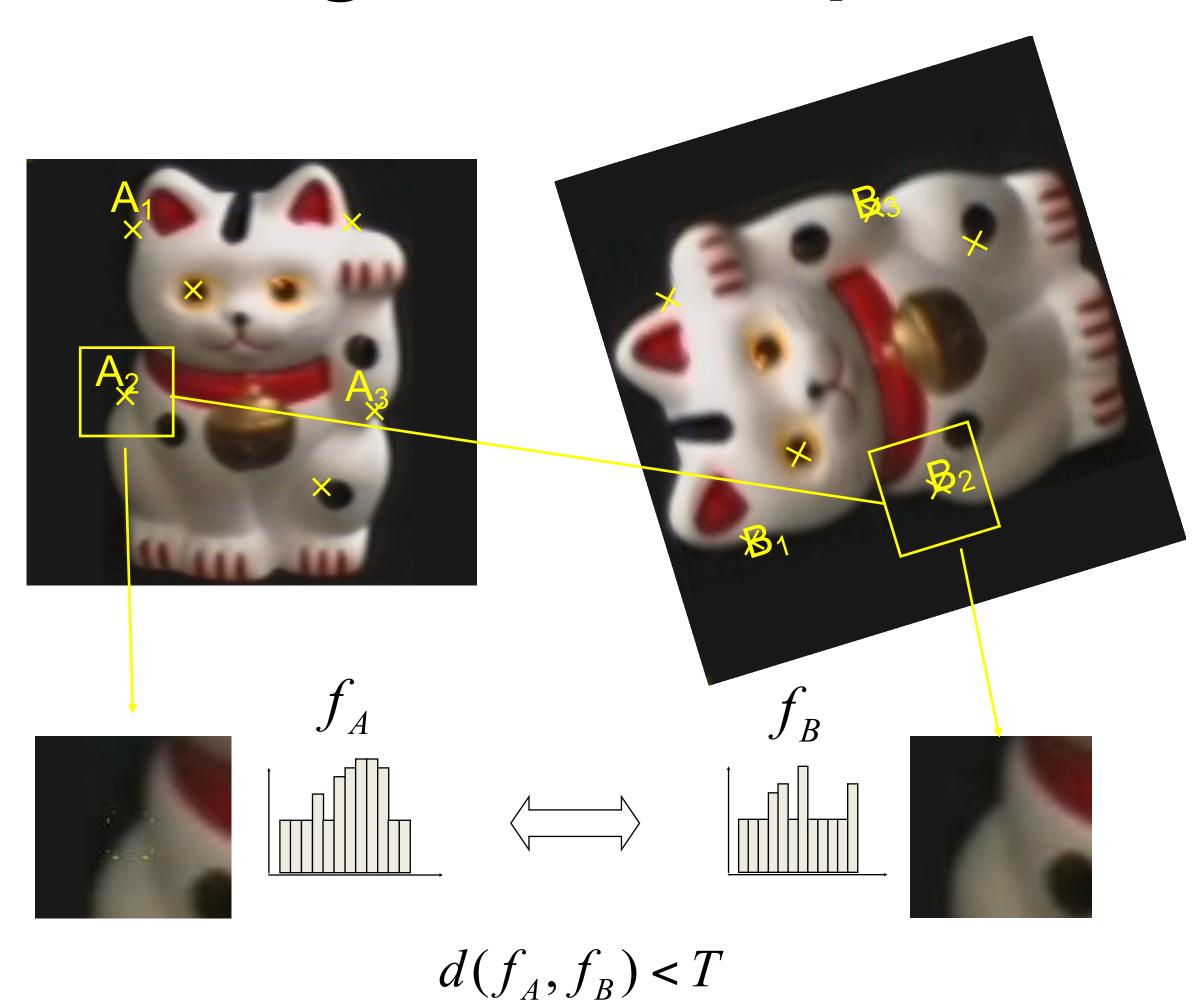
- Calculer une fenêtre de taille proportionnelle à l'échelle donnée par le détecteur de Harris autour du point d'intérêt
- 2. Appliquer une rotation selon l'angle du gradient à ce pixel
- 3. Sous-échantillonner la fenêtre à 5x l'échelle (donc 8x8)

4. Normaliser :
$$l' = \frac{l - \mu}{\sigma}$$





Idée générale: points d'intérêt et descripteurs



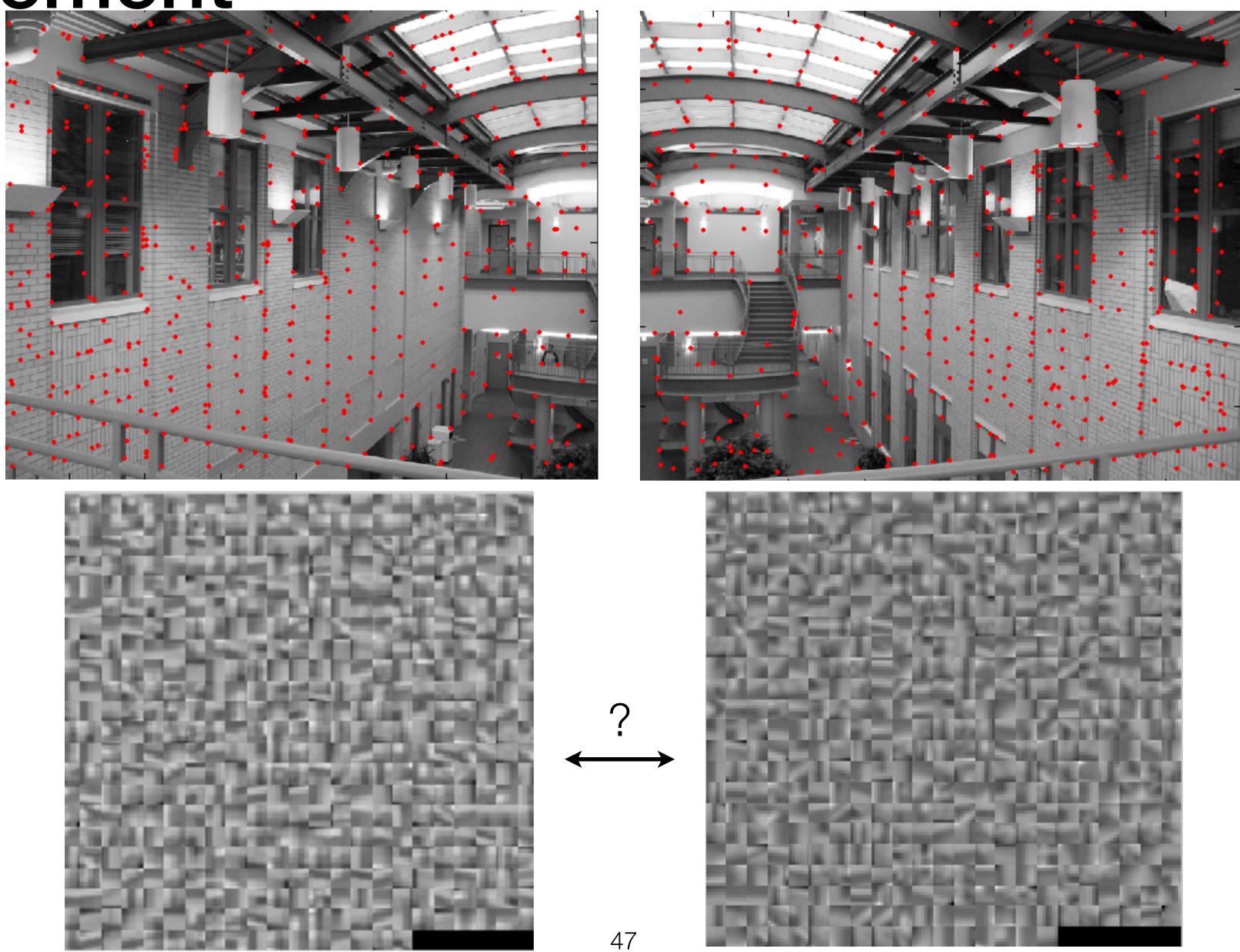
1. Trouver des points distinctifs

2. Définir une région autour de chaque point

3. Calculer un descripteur de la région

4. Apparier les descripteurs entre les 2 images (de façon robuste)

Appariement

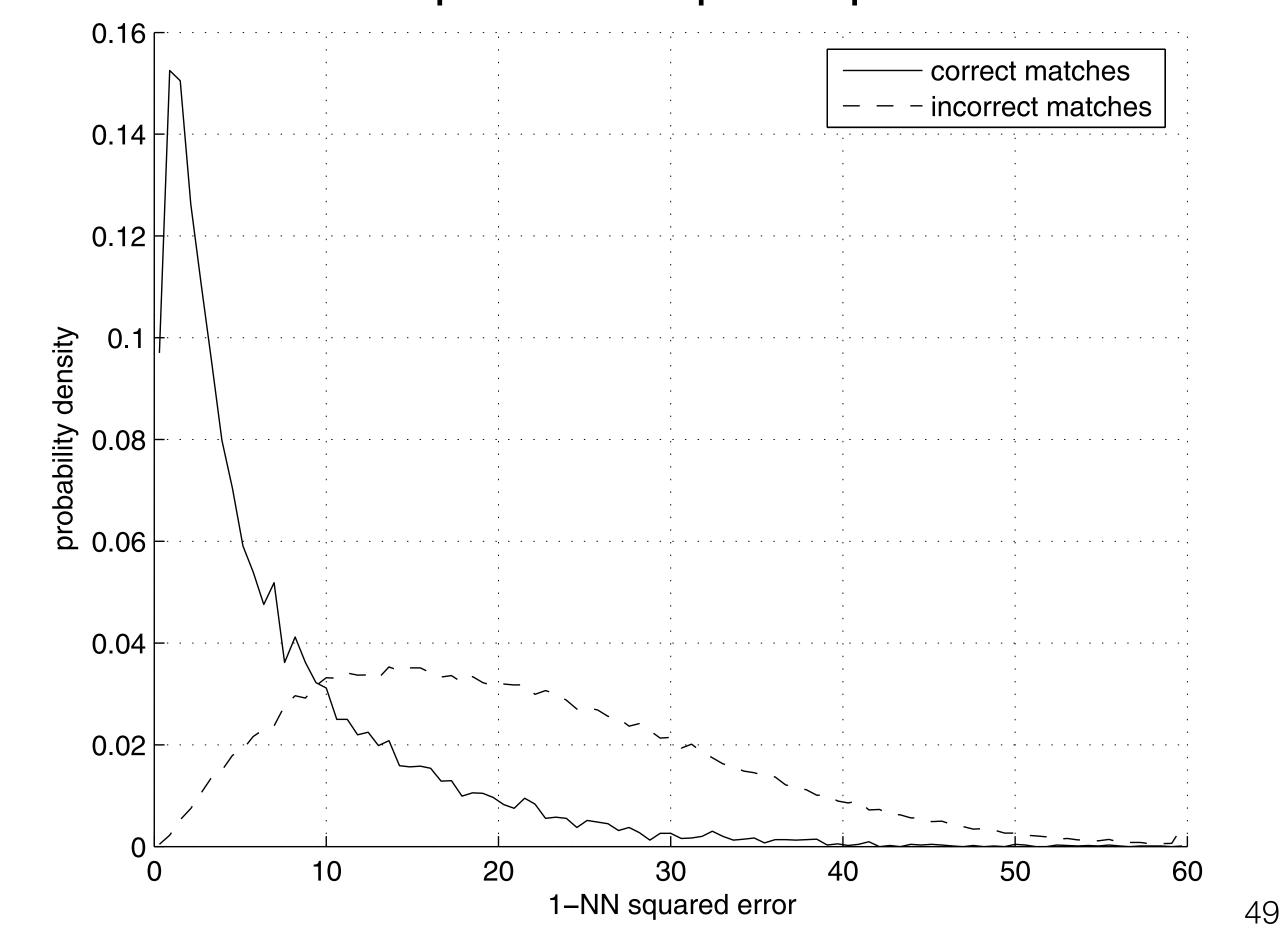


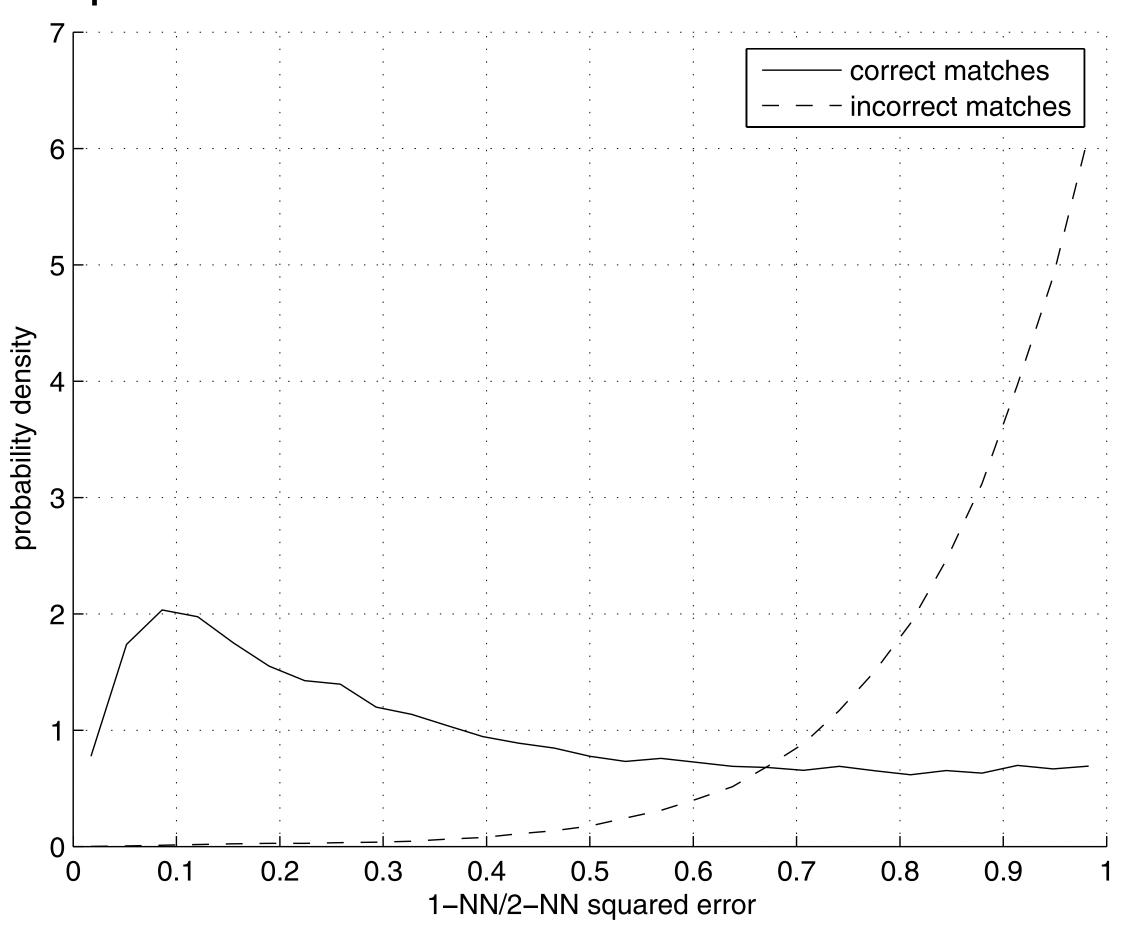
Appariement

- Recherche exhaustive
 - Comparer chaque point à tous les points dans l'autre image et appliquer un seuil sur la différence
- Pour être plus efficace : kd-tree et variantes

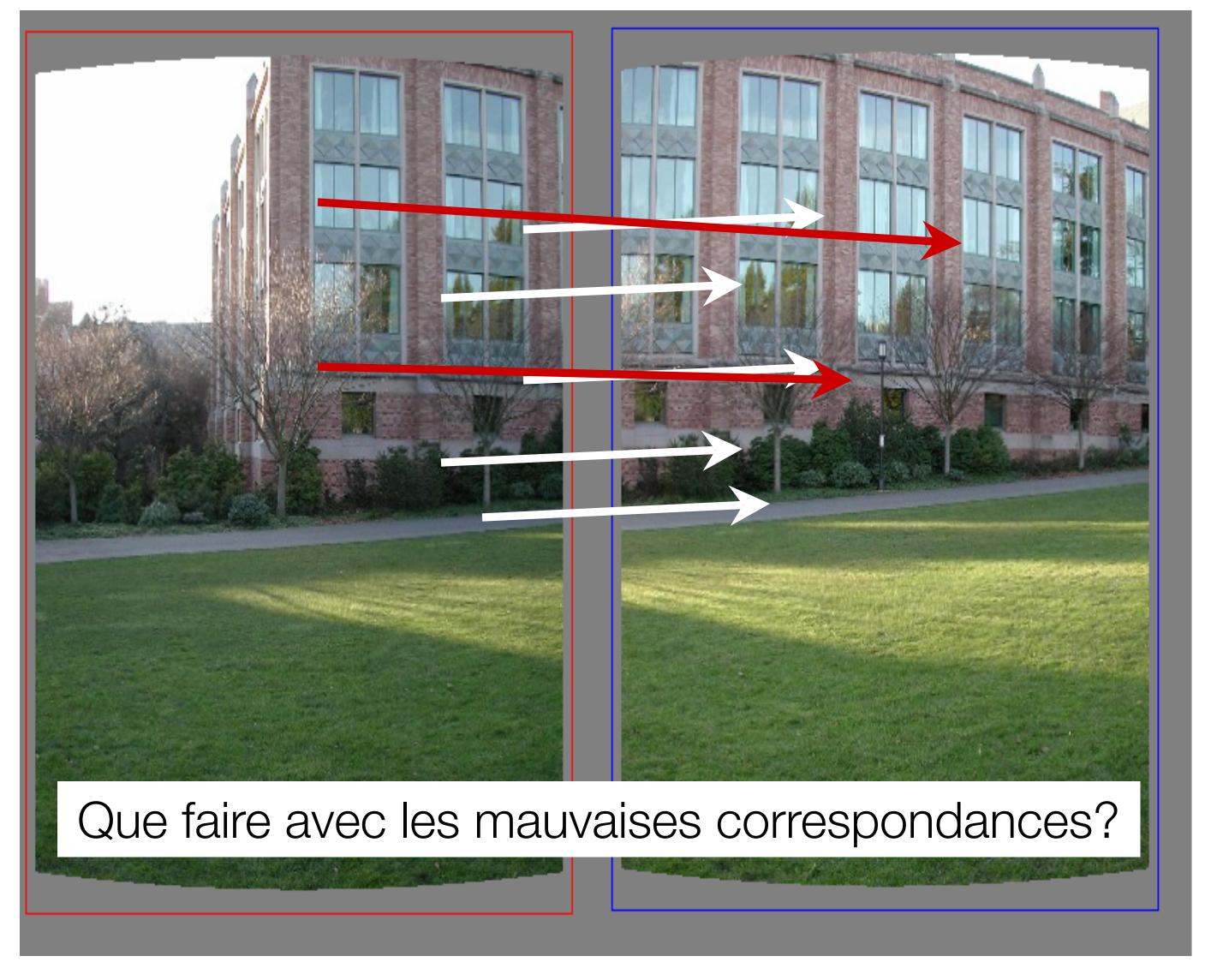
Appariement

• En pratique : calculer le ratio de la distance par rapport au descripteur le plus près sur le 2e plus près

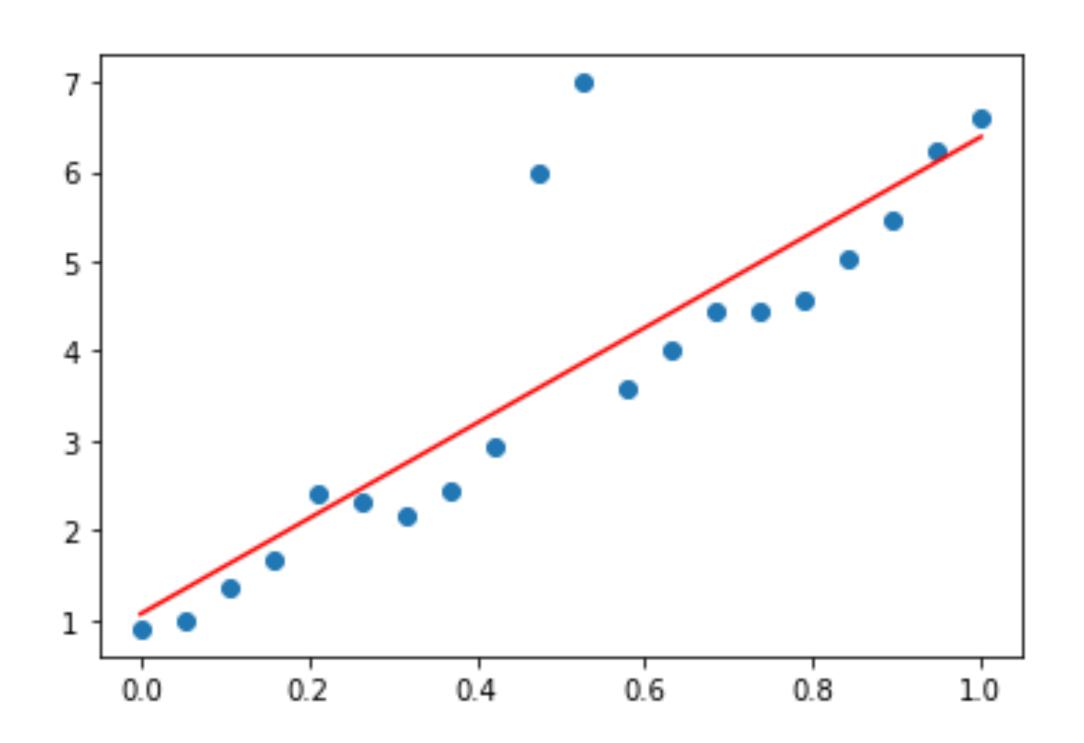




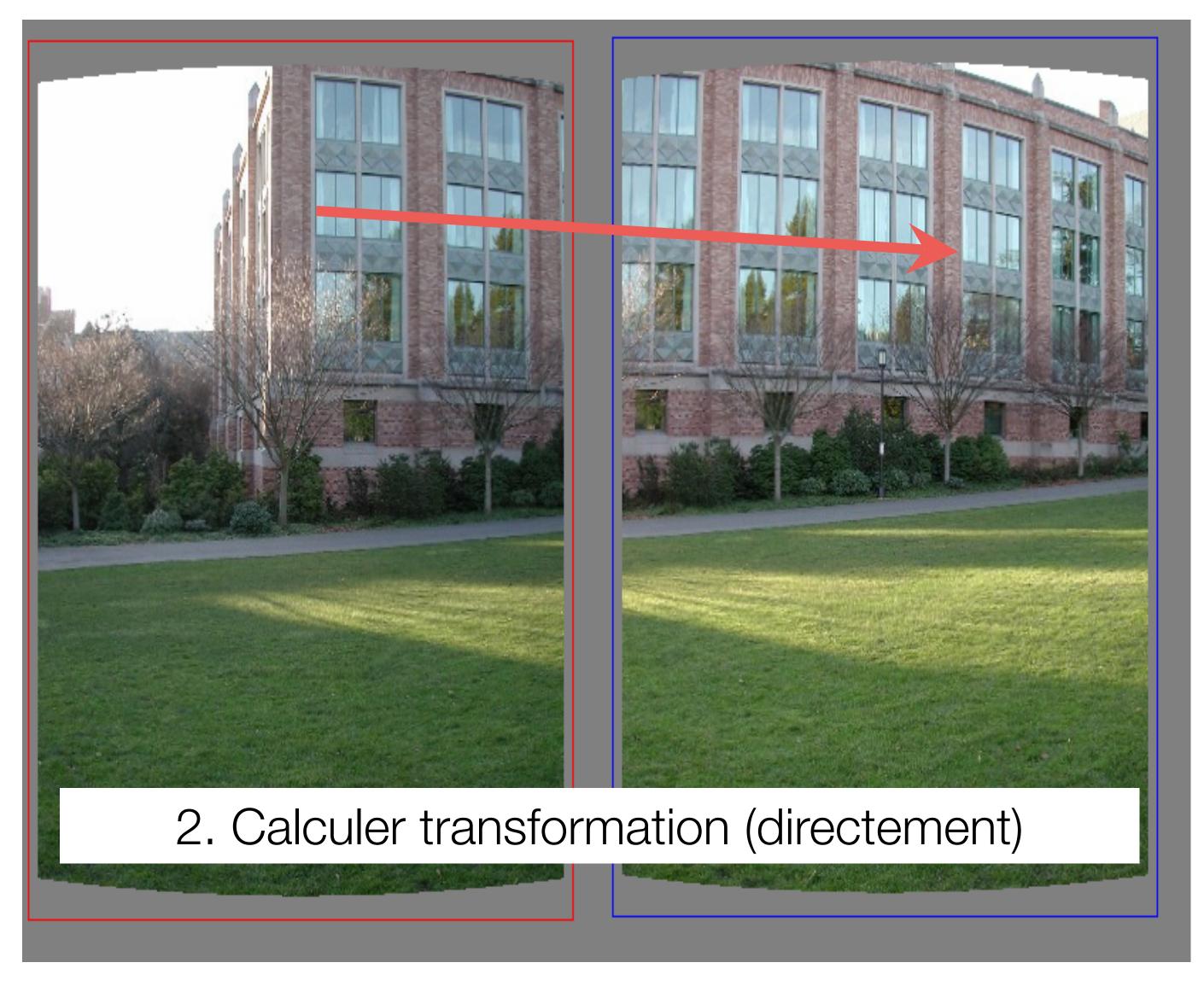
Appariement: aberrations

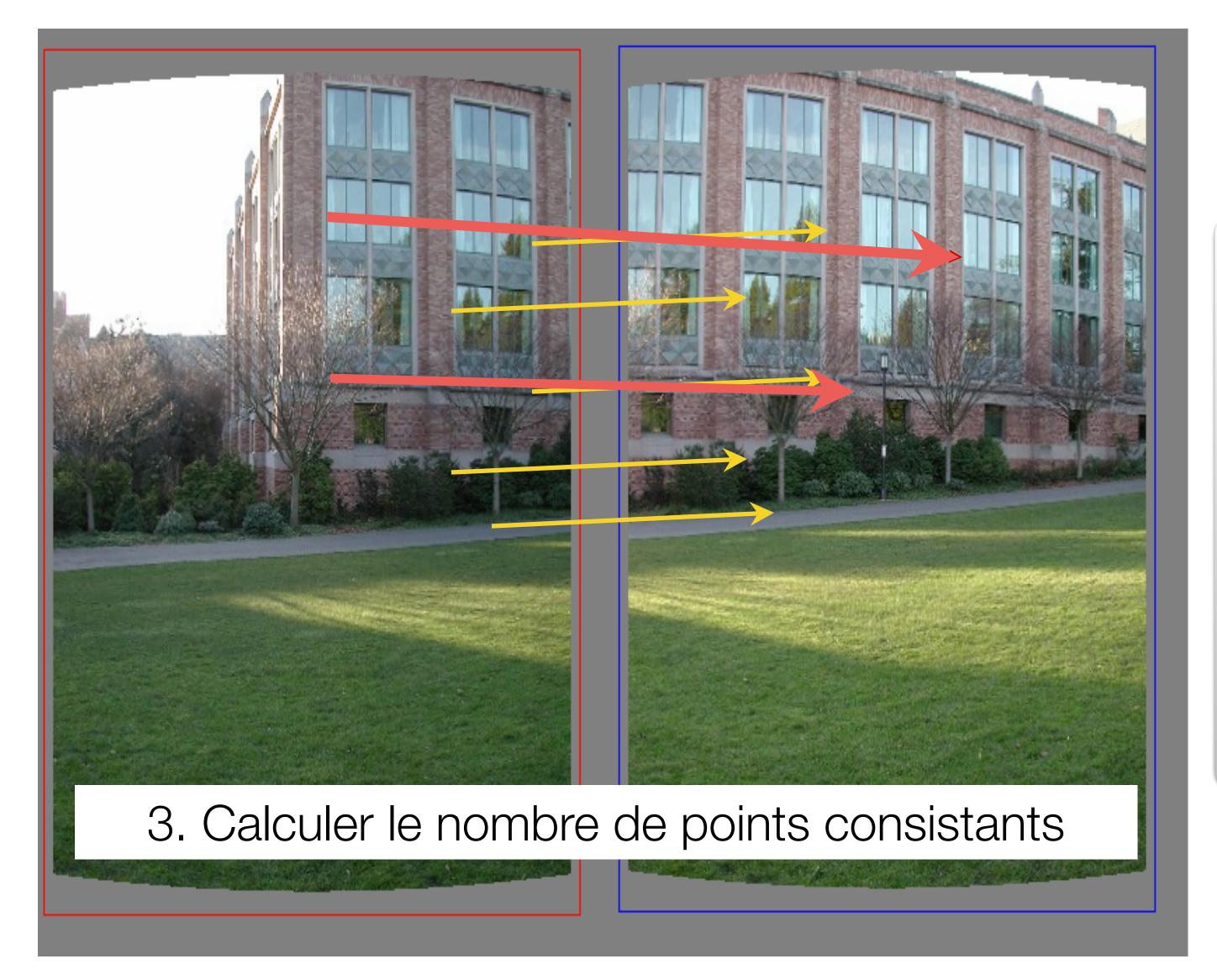


Données aberrantes



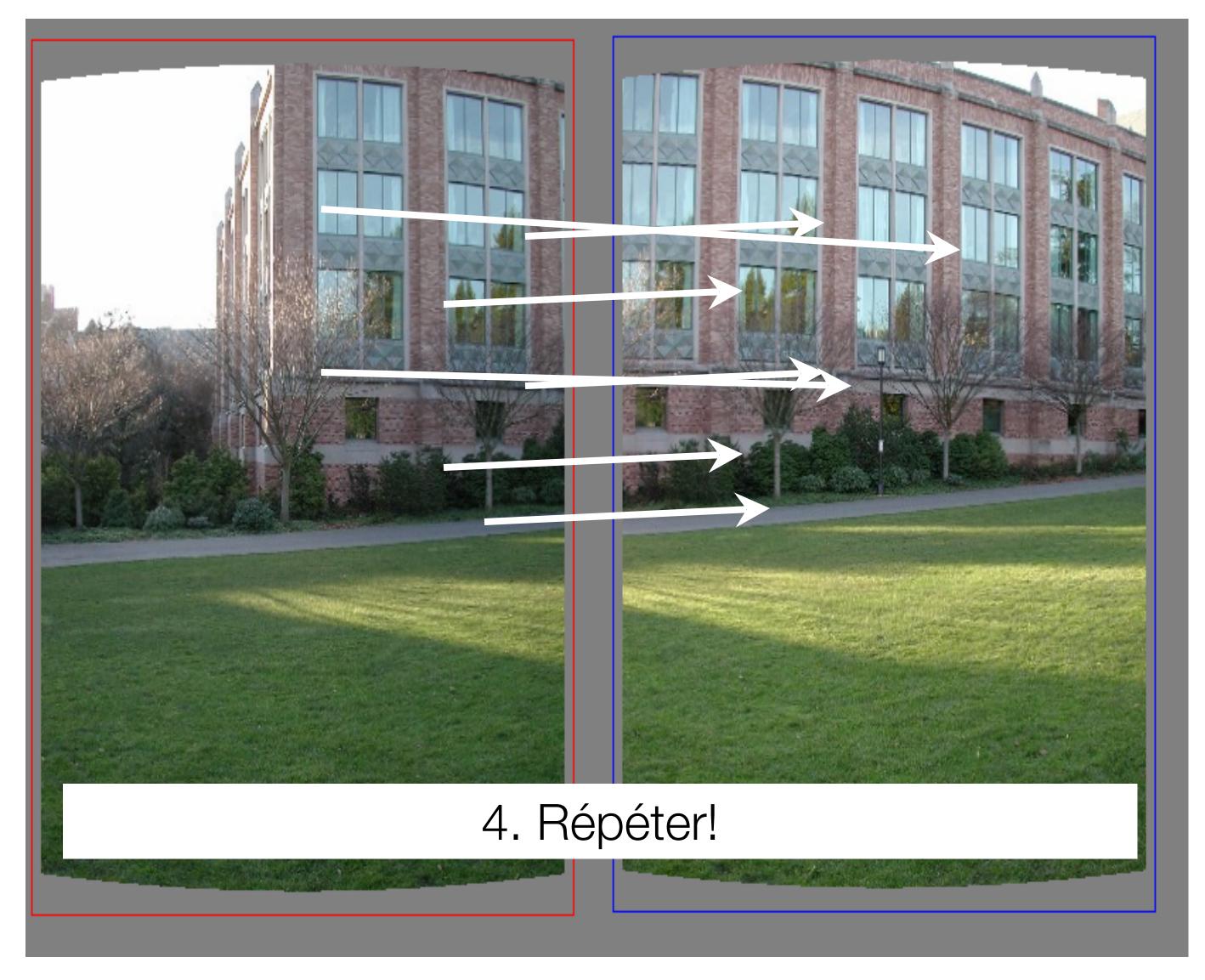
Aussi connu sous le nom de « Essayer toutes sortes de choses au hasard jusqu'à ce que ça marche »

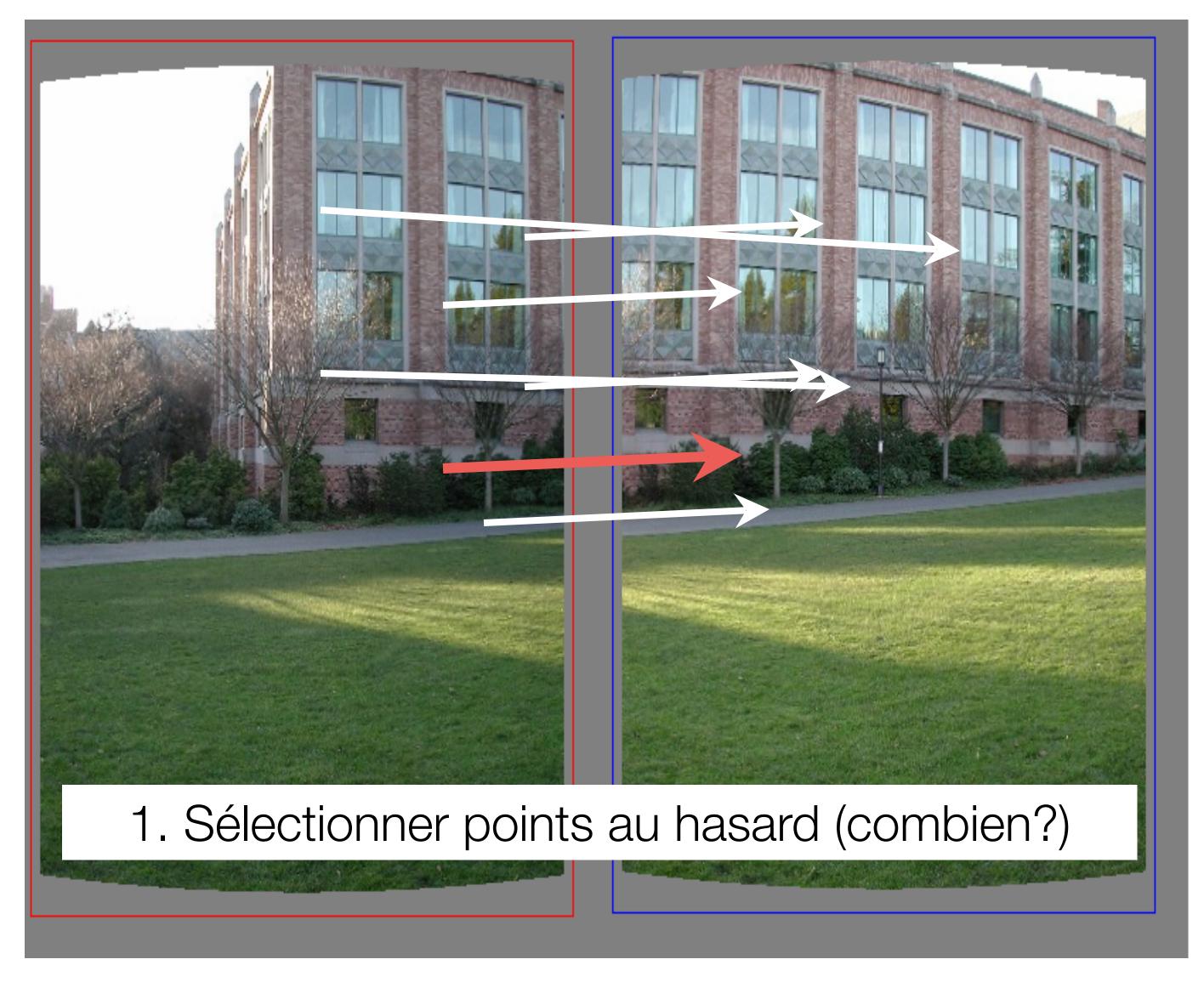


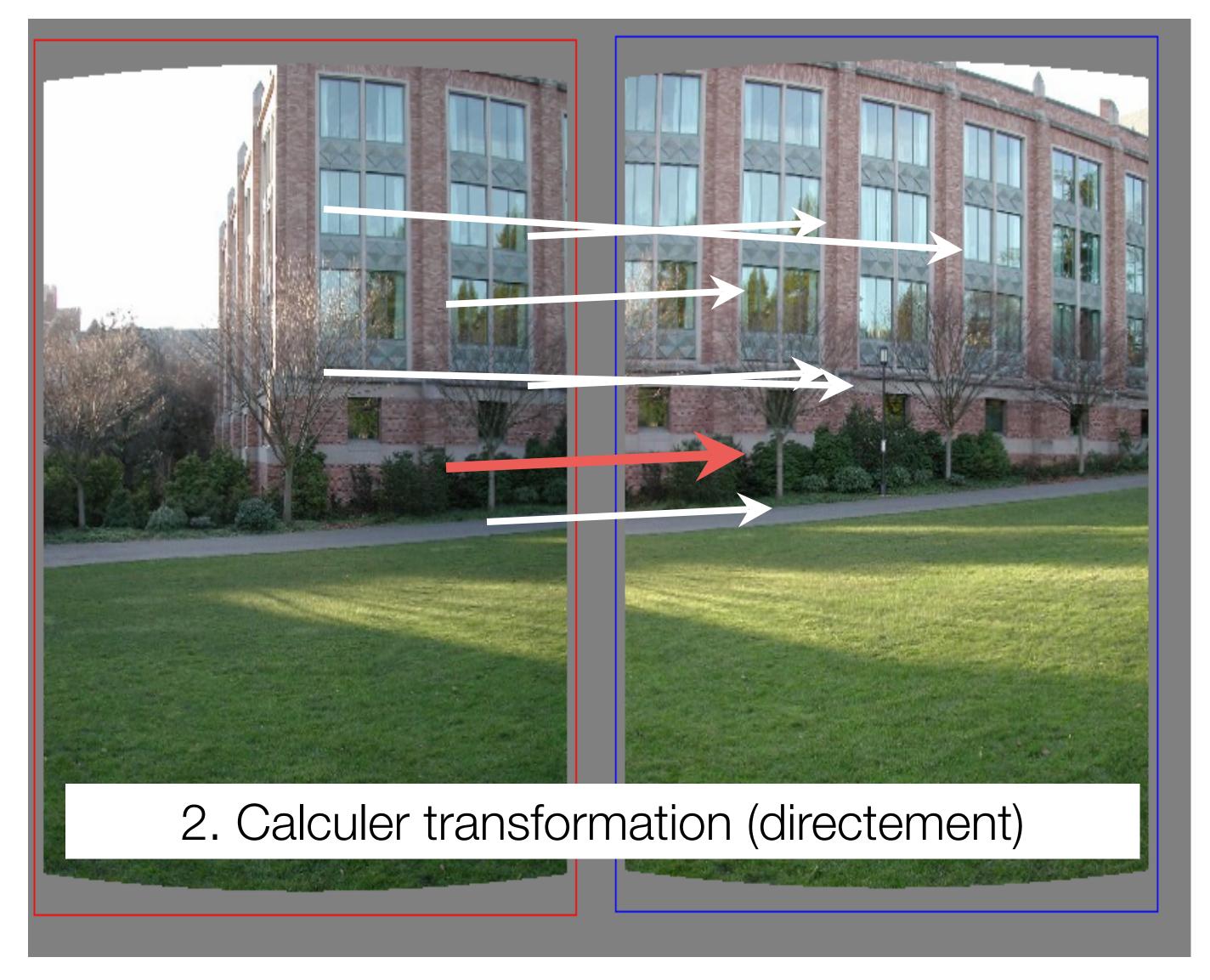


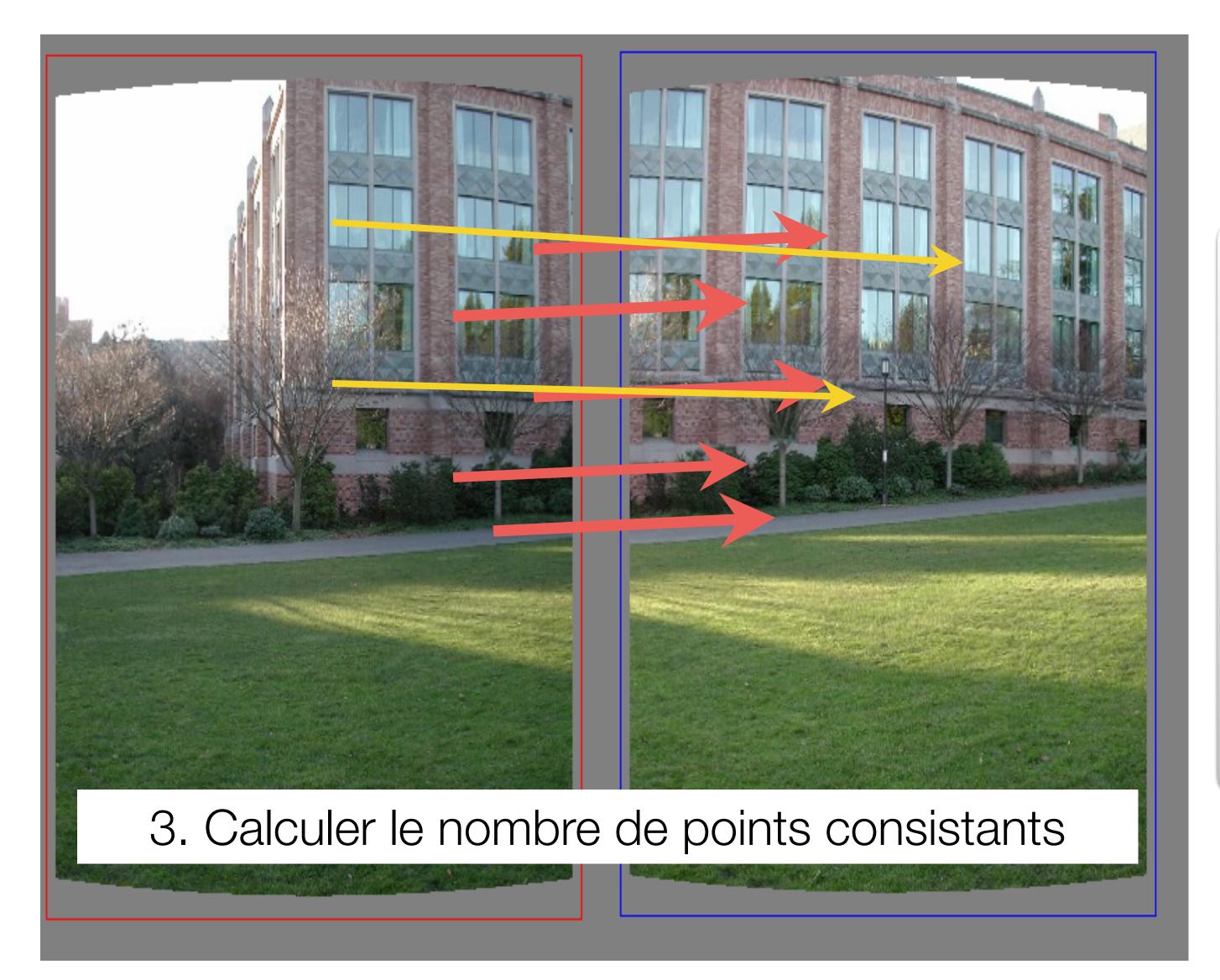
Mémoire

2 points consistants



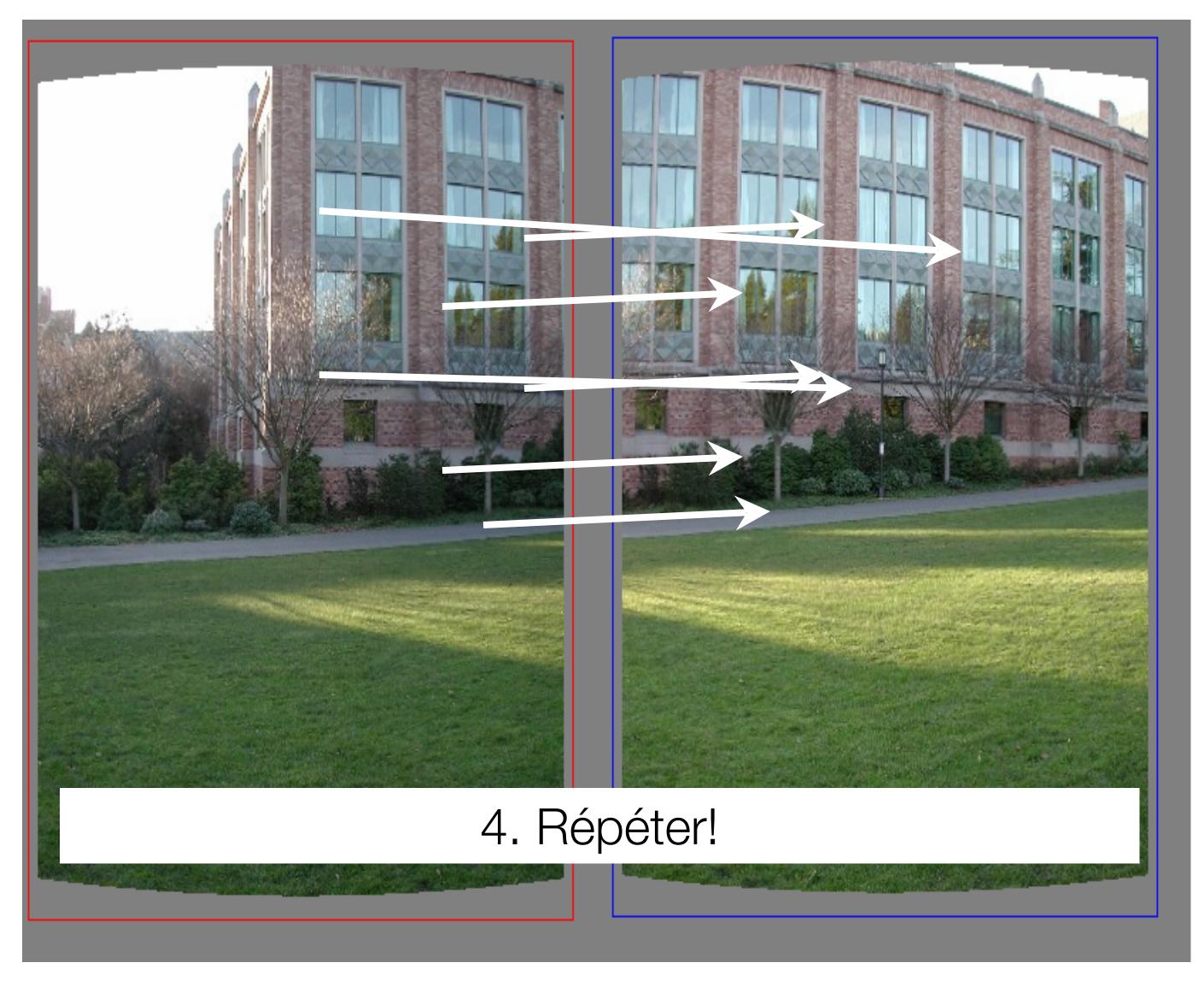


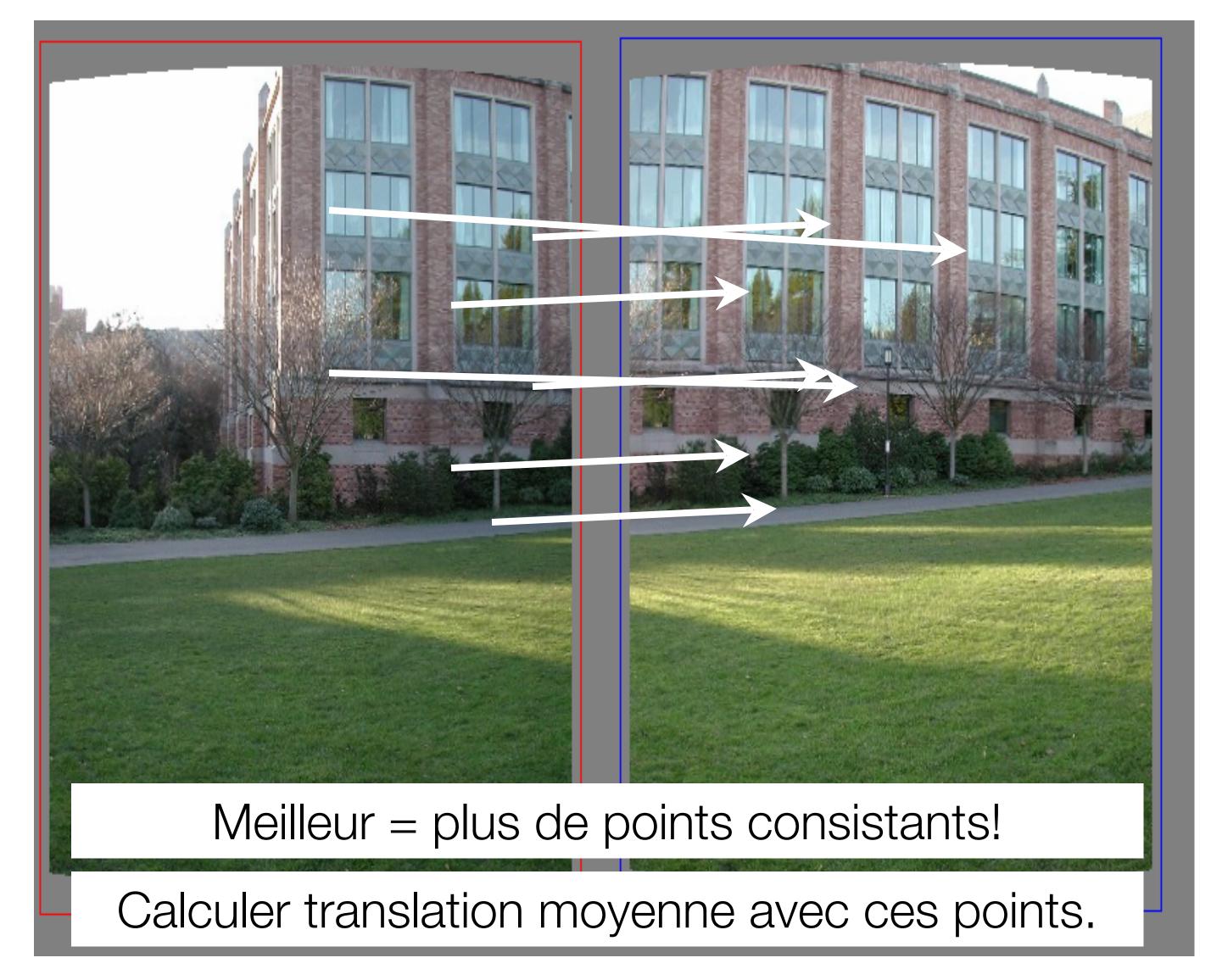




2 points consistants

5 points consistants





2 points consistants

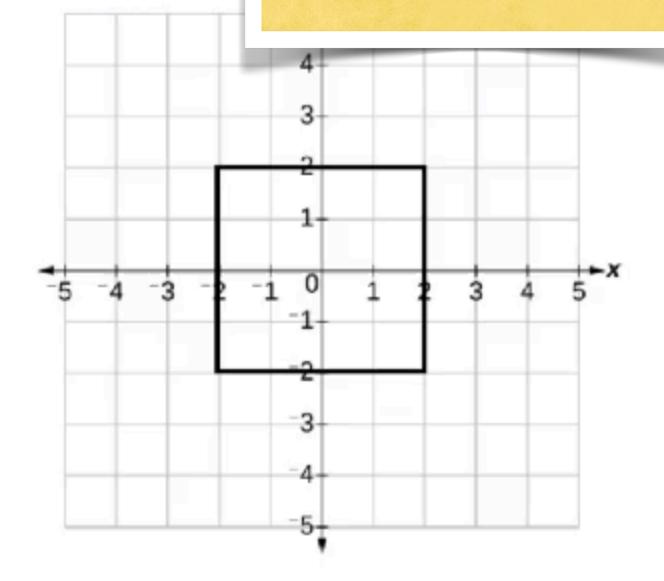
5 points consistants

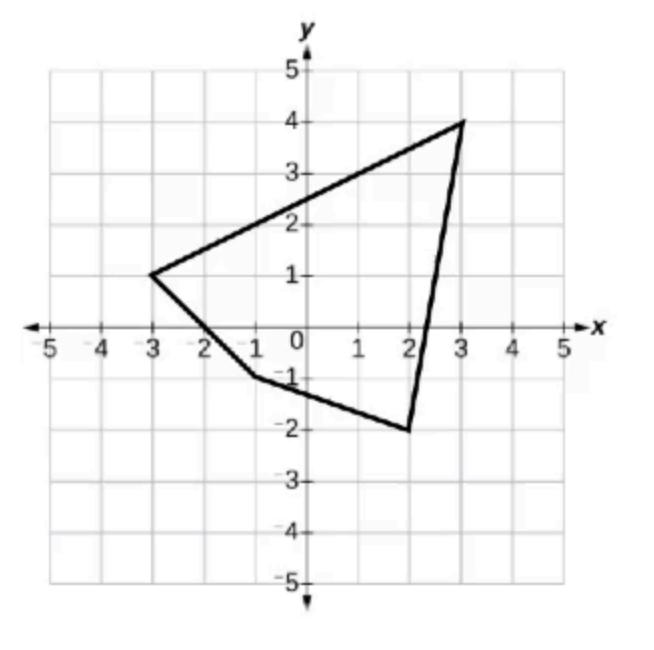
RANSAC pour homographies

- Pour N itérations:
 - Sélectionner points d'intérêt au hasard (combien?)
 - Calculer l'homographie **H**
 - Calculer le nombre de points consistants (où SSD(\mathbf{p}', \mathbf{Hp}) < ϵ)
- Garder l'itération qui correspond au plus grand nombre de points consistants
- ullet Re-calculer ${f H}$ avec la SVD pour tous les points consistants
 - Il suffit de rajouter plus de lignes dans la matrice A (dans Ah=0)

Calculer l'homographie à partir de 8 points $\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

$$\left[egin{array}{c} wx' \ wy' \ w \end{array}
ight] = \left[egin{array}{ccc} a & b & c \ d & e & f \ g & h & i \end{array}
ight] \left[egin{array}{c} x \ y \ 1 \end{array}
ight]$$





RANSAC

